data_change = data.reshape(m * n, k)
时间: 2024-05-24 07:12:19 浏览: 73
As an AI language model, I cannot determine the specific meaning of the variables "data", "m", "n", and "k". Can you please provide more context or information so I can better understand the purpose of this code?
相关问题
import numpy as np def replacezeroes(data): min_nonzero = np.min(data[np.nonzero(data)]) data[data == 0] = min_nonzero return data # Change the line below, based on U file # Foundation users set it to 20, ESI users set it to 21 LINE = 20 def read_scalar(filename): # Read file file = open(filename, 'r') lines_1 = file.readlines() file.close() num_cells_internal = int(lines_1[LINE].strip('\n')) lines_1 = lines_1[LINE + 2:LINE + 2 + num_cells_internal] for i in range(len(lines_1)): lines_1[i] = lines_1[i].strip('\n') field = np.asarray(lines_1).astype('double').reshape(num_cells_internal, 1) field = replacezeroes(field) return field def read_vector(filename): # Only x,y components file = open(filename, 'r') lines_1 = file.readlines() file.close() num_cells_internal = int(lines_1[LINE].strip('\n')) lines_1 = lines_1[LINE + 2:LINE + 2 + num_cells_internal] for i in range(len(lines_1)): lines_1[i] = lines_1[i].strip('\n') lines_1[i] = lines_1[i].strip('(') lines_1[i] = lines_1[i].strip(')') lines_1[i] = lines_1[i].split() field = np.asarray(lines_1).astype('double')[:, :2] return field if __name__ == '__main__': print('Velocity reader file') heights = [2.0, 1.5, 0.5, 0.75, 1.75, 1.25] total_dataset = [] # Read Cases for i, h in enumerate(heights, start=1): U = read_vector(f'U_{i}') nut = read_scalar(f'nut_{i}') cx = read_scalar(f'cx_{i}') cy = read_scalar(f'cy_{i}') h = np.ones(shape=(np.shape(U)[0], 1), dtype='double') * h temp_dataset = np.concatenate((U, cx, cy, h, nut), axis=-1) total_dataset.append(temp_dataset) total_dataset = np.reshape(total_dataset, (-1, 6)) print(total_dataset.shape) # Save data np.save('Total_dataset.npy', total_dataset) # Save the statistics of the data means = np.mean(total_dataset, axis=0).reshape(1, np.shape(total_dataset)[1]) stds = np.std(total_dataset, axis=0).reshape(1, np.shape(total_dataset)[1]) # Concatenate op_data = np.concatenate((means, stds), axis=0) np.savetxt('means', op_data, delimiter=' ') # Need to write out in OpenFOAM rectangular matrix format print('Means:') print(means) print('Stds:') print(stds)解析python代码,说明读取的数据文件格式
这段代码是一个用于读取数据文件的 Python 脚本。它包含了两个函数:`read_scalar(filename)` 和 `read_vector(filename)`,并使用了 `replacezeroes(data)` 函数来替换数组中的零值。脚本读取名为 `U_1`, `U_2`, ..., `U_6` 的文件,并根据文件中的数据生成一个包含各个高度的数据集。
函数 `read_scalar(filename)` 用于读取标量数据文件。它打开给定的文件,读取指定行数的数据,并将其存储在一个 NumPy 数组中。函数 `read_vector(filename)` 用于读取包含 x 和 y 分量的矢量数据文件。它也打开给定的文件,读取指定行数的数据,并将其存储在一个 NumPy 数组中。
在脚本的主程序中,一共读取了 6 个名为 `U`, `nut`, `cx`, `cy`, `h` 的文件,并将它们的数据分别存储在 `total_dataset` 列表中。然后,通过使用 NumPy 的函数将列表中的数据合并成一个包含 6 列的数组。最后,将合并后的数据保存为 `Total_dataset.npy` 文件,并计算并保存数据的均值和标准差。
这段代码假设数据文件的格式为文本文件,每行包含一个数据值。
import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt ## Let us define a plt function for simplicity def plt_loss(x,training_metric,testing_metric,ax,colors = ['b']): ax.plot(x,training_metric,'b',label = 'Train') ax.plot(x,testing_metric,'k',label = 'Test') ax.set_xlabel('Epochs') ax.set_ylabel('Accuarcy')# ax.set_ylabel('Categorical Crossentropy Loss') plt.legend() plt.grid() plt.show() tf.keras.utils.set_random_seed(1) ## We import the Minist Dataset using Keras.datasets (train_data, train_labels), (test_data, test_labels) = keras.datasets.mnist.load_data() ## We first vectorize the image (28*28) into a vector (784) train_data = train_data.reshape(train_data.shape[0],train_data.shape[1]*train_data.shape[2]) # 60000*784 test_data = test_data.reshape(test_data.shape[0],test_data.shape[1]*test_data.shape[2]) # 10000*784 ## We next change label number to a 10 dimensional vector, e.g., 1->[0,1,0,0,0,0,0,0,0,0] train_labels = keras.utils.to_categorical(train_labels,10) test_labels = keras.utils.to_categorical(test_labels,10) ## start to build a MLP model N_batch_size = 5000 N_epochs = 100 lr = 0.01 # ## we build a three layer model, 784 -> 64 -> 10 MLP_3 = keras.models.Sequential([ keras.layers.Dense(64, input_shape=(784,),activation='relu'), keras.layers.Dense(10,activation='softmax') ]) MLP_3.compile( optimizer=keras.optimizers.Adam(lr), loss= 'categorical_crossentropy', metrics = ['accuracy'] ) History = MLP_3.fit(train_data,train_labels, batch_size = N_batch_size, epochs = N_epochs,validation_data=(test_data,test_labels), shuffle=False) train_acc = History.history['accuracy'] test_acc = History.history['val_accuracy']模仿此段代码,写一个双隐层感知器(输入层784,第一隐层128,第二隐层64,输出层10)
import numpy as np
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
## Let us define a plt function for simplicity
def plt_loss(x,training_metric,testing_metric,ax,colors = ['b']):
ax.plot(x,training_metric,'b',label = 'Train')
ax.plot(x,testing_metric,'k',label = 'Test')
ax.set_xlabel('Epochs')
ax.set_ylabel('Accuracy')
plt.legend()
plt.grid()
plt.show()
tf.keras.utils.set_random_seed(1)
## We import the Minist Dataset using Keras.datasets
(train_data, train_labels), (test_data, test_labels) = keras.datasets.mnist.load_data()
## We first vectorize the image (28*28) into a vector (784)
train_data = train_data.reshape(train_data.shape[0],train_data.shape[1]*train_data.shape[2]) # 60000*784
test_data = test_data.reshape(test_data.shape[0],test_data.shape[1]*test_data.shape[2]) # 10000*784
## We next change label number to a 10 dimensional vector, e.g., 1->[0,1,0,0,0,0,0,0,0,0]
train_labels = keras.utils.to_categorical(train_labels,10)
test_labels = keras.utils.to_categorical(test_labels,10)
## start to build a MLP model
N_batch_size = 5000
N_epochs = 100
lr = 0.01
## we build a three layer model, 784 -> 64 -> 10
MLP_3 = keras.models.Sequential([
keras.layers.Dense(128, input_shape=(784,),activation='relu'),
keras.layers.Dense(64, activation='relu'),
keras.layers.Dense(10,activation='softmax')
])
MLP_3.compile(
optimizer=keras.optimizers.Adam(lr),
loss= 'categorical_crossentropy',
metrics = ['accuracy']
)
History = MLP_3.fit(train_data,train_labels, batch_size = N_batch_size, epochs = N_epochs,validation_data=(test_data,test_labels), shuffle=False)
train_acc = History.history['accuracy']
test_acc = History.history['val_accuracy']
阅读全文
相关推荐
















