data_map = np.max(data_map, axis=axis_num) Eigen::Tensor 实现

时间: 2024-03-05 11:48:39 浏览: 19
对于使用Eigen::Tensor实现的代码,可以按照以下方式实现data_map的按照axis_num轴求最大值: ```c++ // 定义一个三维的Tensor Eigen::Tensor<float, 3> data_map(2, 3, 4); // 假设要按照第二个轴求最大值 int axis_num = 1; // 按照指定轴进行最大值计算 Eigen::Tensor<float, 2> max_data = data_map.maximum(axis_num); ``` 以上代码中,首先定义了一个三维的Tensor `data_map`,然后定义了一个整型变量 `axis_num`,表示要按照哪个轴进行最大值计算。最后通过 `data_map.maximum(axis_num)` 方法得到了按照指定轴计算的最大值。需要注意的是,最终得到的 `max_data` 是一个二维Tensor,其大小为`2 x 4`,因为按照第二个轴计算最大值时,第二个轴的大小是3,因此最终得到的Tensor只有两个维度,分别对应第一个轴和第三个轴。
相关问题

def map_data(data_map, axis_num): data_map = np.max(data_map, axis=axis_num) data_map -= data_map.min() data_map = data_map / data_map.max() data_map = np.array(data_map * 255, dtype=np.uint8) return data_map 转为c++ Eigen::Tensor

这里提供一种使用 Eigen::Tensor 库实现的 C++ 版本代码: ```cpp #include <Eigen/Dense> #include <Eigen/Tensor> Eigen::Tensor<uint8_t, 2> map_data(const Eigen::Tensor<float, 3>& data_map, int axis_num) { int rows = data_map.dimension(0); int cols = data_map.dimension(1); Eigen::Tensor<float, 2> max_vals; if (axis_num == 0) { max_vals = data_map.maximum(Eigen::array<int, 1>{2}).reshape(Eigen::array<int, 2>{rows, cols}); } else { max_vals = data_map.maximum(Eigen::array<int, 1>{1}).reshape(Eigen::array<int, 2>{rows, cols}); } Eigen::Tensor<uint8_t, 2> mapped_data = (data_map / max_vals).maximum(0.0f).minimum(1.0f) * 255.0f; return mapped_data; } ``` 这里使用了 Eigen::Tensor 库来处理多维数组。输入数据类型为 `Eigen::Tensor<float, 3>`,输出数据类型为 `Eigen::Tensor<uint8_t, 2>`。函数中使用 `maximum()` 和 `minimum()` 函数来进行数值的归一化,并使用 `reshape()` 函数来将三维数组转换为二维数组。

data00=data m,n = np.shape(data00) a = np.array(data00) Data00 = a[1:m,2:n] Data00 = Data00.astype(np.float64) Power = Data00[:,13] Power_train = Power[0:96] P_min = np.min(Power_train) P_gap = np.max(Power_train)-np.min(Power_train) Power_uni = (Power-P_min)/P_gap # 提取imfs和剩余信号res emd = EMD() emd.emd(Power_uni) imfs, res = emd.get_imfs_and_residue() N = len(imfs) P_H = np.sum(imfs[0:6,:],axis=0) P_M = np.sum(imfs[6:12,:],axis=0) P_L = res P_H =np.expand_dims(P_H,axis=1) P_M =np.expand_dims(P_M,axis=1) P_L =np.expand_dims(P_L,axis=1) Nwp = Data00[:,0:7] Nwp_train = Nwp[0:96] N_min = np.min(Nwp_train,axis=0) N_gap = np.max(Nwp_train,axis=0)-np.min(Nwp_train,axis=0) Nwp_uni = (Nwp-N_min)/N_gap#(N,7) Weather = Data00[:,7:13] Weather_train = Weather[0:96] W_min = np.min(Weather_train,axis=0) W_gap = np.max(Weather_train,axis=0)-np.min(Weather_train,axis=0) Weather_uni = (Weather-W_min)/W_gap#(N,6) 优化代码

以下是部分代码的优化建议: 1. 对于以下代码段: ``` a = np.array(data00) Data00 = a[1:m,2:n] ``` 可以合并为一行: ``` Data00 = np.array(data00)[1:m,2:n] ``` 2. 对于以下代码段: ``` P_H = np.sum(imfs[0:6,:],axis=0) P_M = np.sum(imfs[6:12,:],axis=0) P_L = res P_H =np.expand_dims(P_H,axis=1) P_M =np.expand_dims(P_M,axis=1) P_L =np.expand_dims(P_L,axis=1) ``` 可以使用 `np.newaxis` 替代 `np.expand_dims` 来实现: ``` P_H = np.sum(imfs[0:6,:],axis=0)[:, np.newaxis] P_M = np.sum(imfs[6:12,:],axis=0)[:, np.newaxis] P_L = res[:, np.newaxis] ``` 3. 对于以下代码段: ``` N_min = np.min(Nwp_train,axis=0) N_gap = np.max(Nwp_train,axis=0)-np.min(Nwp_train,axis=0) Nwp_uni = (Nwp-N_min)/N_gap#(N,7) ``` 可以使用 `np.ptp` 函数(peak-to-peak)来计算最大值和最小值的差: ``` N_min = np.min(Nwp_train,axis=0) N_gap = np.ptp(Nwp_train,axis=0) Nwp_uni = (Nwp-N_min)/N_gap#(N,7) ``` 4. 对于以下代码段: ``` Weather = Data00[:,7:13] Weather_train = Weather[0:96] W_min = np.min(Weather_train,axis=0) W_gap = np.max(Weather_train,axis=0)-np.min(Weather_train,axis=0) Weather_uni = (Weather-W_min)/W_gap#(N,6) ``` 可以使用与第三个优化建议类似的方法: ``` Weather = Data00[:,7:13] Weather_train = Weather[0:96] W_min = np.min(Weather_train,axis=0) W_gap = np.ptp(Weather_train,axis=0) Weather_uni = (Weather-W_min)/W_gap#(N,6) ``` 当然,以上只是一些简单的优化建议,具体的优化效果还需要根据实际情况进行评估。

相关推荐

下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))

最新推荐

recommend-type

Python学习笔记16 - 猜数字小游戏

猜数字小游戏的相关函数,与主程序搭配使用
recommend-type

机器人比赛内容的讲解,帮助简单了解一下机器人比赛的注意事项

适用于未参加过机器人比赛的小伙伴,简单了解一下注意事项。
recommend-type

shumaguan.rar

shumaguan.rar
recommend-type

信捷MP3系列步进电机CAD图纸.zip

信捷MP3系列步进电机CAD图纸
recommend-type

基于Springboot的足球青训俱乐部管理系统(免费提供全套java开源毕业设计源码+数据库+开题报告+论文+ppt+使用说明

随着社会经济的快速发展,人们对足球俱乐部的需求日益增加,加快了足球健身俱乐部的发展,足球俱乐部管理工作日益繁忙,传统的管理方式已经无法满足足球俱乐部管理需求,因此,为了提高足球俱乐部管理效率,足球俱乐部管理后台系统应运而生。 本文重点阐述了足球青训俱乐部管理后台系统的开发过程,以实际运用为开发背景,基于Spring Boot框架,运用了Java技术和MYSQL数据库进行开发设计,充分保证系统的安全性和稳定性。本系统界面良好,操作简单方便,通过系统概述、系统分析、系统设计、数据库设计、系统测试这几个部分,详细的说明了系统的开发过程,最后并对整个开发过程进行了总结,实现了俱乐部相关信息管理的重要功能。 本系统经过测试,运行效果稳定,操作方便、快捷,是一个功能全面、实用性好、安全性高,并具有良好的可扩展性、可维护性的足球青训俱乐部管理后台系统。 关键字:俱乐部管理;Spring Boot框架;Java技术;MYSQL数据库
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。