class CliffWalkingEnv: def __init__(self, ncol, nrow): self.nrow = nrow self.ncol = ncol self.x = 0 # 记录当前智能体位置的横坐标 self.y = self.nrow - 1 # 记录当前智能体位置的纵坐标 def step(self, action): # 外部调用这个函数来改变当前位置 # 4种动作, change[0]:上, change[1]:下, change[2]:左, change[3]:右。坐标系原点(0,0) # 定义在左上角 change = [[0, -1], [0, 1], [-1, 0], [1, 0]] self.x = min(self.ncol - 1, max(0, self.x + change[action][0])) self.y = min(self.nrow - 1, max(0, self.y + change[action][1])) next_state = self.y * self.ncol + self.x reward = -1 done = False if self.y == self.nrow - 1 and self.x > 0: # 下一个位置在悬崖或者目标 done = True if self.x != self.ncol - 1: reward = -100 return next_state, reward, done 解释

时间: 2024-04-12 20:33:41 浏览: 149
上述代码是一个名为CliffWalkingEnv的类,用于定义一个悬崖行走的环境。这个环境是一个ncol * nrow的网格,代表了智能体的行动空间。 在类的初始化函数__init__中,传入参数ncol和nrow,用于定义网格的列数和行数。同时,初始化self.x和self.y为0和nrow-1,表示智能体的初始位置在左上角。 类中定义了一个step函数,用于外部调用来改变智能体的位置。这个函数接收一个动作action作为参数,根据动作更新智能体的位置。具体地,根据动作对应的change数组中的数值,更新self.x和self.y的值。同时,计算出下一个状态next_state,根据当前位置计算得到。 函数返回三个值:next_state表示下一个状态的编号,reward表示智能体在当前状态下获得的奖励,done表示当前状态是否为终止状态。如果智能体到达了最后一行且横坐标不为最后一列,即下一个位置是悬崖或目标位置,则将done设置为True,并将reward设为-100。 这段代码实现了一个简单的悬崖行走环境,并提供了一个step函数来进行状态转移和奖励计算。
相关问题

import matplotlib.pyplot as plt import numpy as np from tqdm import tqdm # tqdm 是显示循环进度条的库 class CliffWalkingEnv: def __init__(self, ncol, nrow): self.nrow = nrow self.ncol = ncol self.x = 0 # 记录当前智能体位置的横坐标 self.y = self.nrow - 1 # 记录当前智能体位置的纵坐标 def step(self, action): # 外部调用这个函数来改变当前位置 # 4 种动作, change[0]:上, change[1]:下, change[2]:左, change[3]:右。坐标系原点(0,0) # 定义在左上角 change = [[0, -1], [0, 1], [-1, 0], [1, 0]] self.x = min(self.ncol - 1, max(0, self.x + change[action][0])) self.y = min(self.nrow - 1, max(0, self.y + change[action][1])) next_state = self.y * self.ncol + self.x reward = -1 done = False if self.y == self.nrow - 1 and self.x > 0: # 下一个位置在悬崖或者目标 done = True if self.x != self.ncol - 1: reward = -100 return next_state, reward, done def reset(self): # 回归初始状态,坐标轴原点在左上角 self.x = 0 self.y = self.nrow - 1 return self.y * self.ncol + self.x将上述代码的每一行都进行注释并解释它在这个位置的作用

``` import matplotlib.pyplot as plt import numpy as np from tqdm import tqdm class CliffWalkingEnv: def __init__(self, ncol, nrow): self.nrow = nrow # 网格世界的行数 self.ncol = ncol # 网格世界的列数 self.x = 0 # 记录当前智能体位置的横坐标 self.y = self.nrow - 1 # 记录当前智能体位置的纵坐标 def step(self, action): # 外部调用这个函数来改变当前位置 # 4 种动作,change[0]: 上,change[1]: 下,change[2]: 左,change[3]: 右。坐标系原点(0,0) # 定义在左上角 change = [[0, -1], [0, 1], [-1, 0], [1, 0]] self.x = min(self.ncol - 1, max(0, self.x + change[action][0])) # 更新横坐标 self.y = min(self.nrow - 1, max(0, self.y + change[action][1])) # 更新纵坐标 next_state = self.y * self.ncol + self.x # 计算新位置对应的状态 reward = -1 # 每一步都是 -1 的奖励 done = False if self.y == self.nrow - 1 and self.x > 0: # 如果下一个位置在悬崖或者目标 done = True if self.x != self.ncol - 1: # 如果没有到达目标 reward = -100 # 在悬崖上的奖励是 -100 return next_state, reward, done def reset(self): # 回归初始状态,坐标轴原点在左上角 self.x = 0 self.y = self.nrow - 1 return self.y * self.ncol + self.x ``` 代码注释: 1. 导入必要的库:`matplotlib.pyplot` 用于绘图,`numpy` 用于数值计算,`tqdm` 用于显示循环进度条。 2. 定义一个 `CliffWalkingEnv` 类,表示悬崖行走环境。该环境包含以下属性: - `nrow`:网格世界的行数。 - `ncol`:网格世界的列数。 - `x`:当前智能体的横坐标。 - `y`:当前智能体的纵坐标。 该类包含以下方法: 3. `__init__(self, ncol, nrow)`:类的构造函数,用于初始化对象的属性。 4. `step(self, action)`:该方法用于执行智能体的动作。接受一个参数 `action` 表示智能体的动作,返回三个值: - `next_state`:执行动作后智能体的新状态。 - `reward`:执行动作后智能体获得的奖励。 - `done`:判断智能体是否到达了终止状态。 该方法的具体实现如下: - 根据动作更新智能体的横纵坐标。 - 计算新位置对应的状态。 - 如果下一个位置在悬崖或者目标,则智能体到达了终止状态,`done` 为 `True`。 - 如果智能体没有到达目标,则奖励为 -100。 - 返回新状态、奖励和是否到达终止状态的信息。 5. `reset(self)`:该方法用于将智能体回归到初始状态。将横纵坐标都设为 0 并返回状态。

import copy class CliffWalkingEnv: """ 悬崖漫步环境""" def __init__(self, ncol=9, nrow=5): self.ncol = ncol # 定义网格世界的列 self.nrow = nrow # 定义网格世界的行 # 转移矩阵 P[state][action] = [(p, next_state, reward, done)]包含下一个状态和奖励 self.P = self.createP() def createP(self): # 初始化 P = [[[] for j in range(4)] for i in range(self.nrow * self.ncol)] # 4 种动作, change[0]:上, change[1]:下, change[2]:左, change[3]:右。坐标系原点(0,0) # 定义在左上角 change = [[0, -1], [0, 1], [-1, 0], [1, 0]] for i in range(self.nrow): for j in range(self.ncol): for a in range(4): # 位置在悬崖或者目标状态, 因为无法继续交互,任何动作奖励都为 0 if i == self.nrow - 1 and j > 0: P[i * self.ncol + j][a] = [(1, i * self.ncol + j, 0, True)] continue # 其他位置 next_x = min(self.ncol - 1, max(0, j + change[a][0])) next_y = min(self.nrow - 1, max(0, i + change[a][1])) next_state = next_y * self.ncol + next_x reward = -1 done = False # 下一个位置在悬崖或者终点 if next_y == self.nrow - 1 and next_x > 0: done = True if next_x != self.ncol - 1: # 下一个位置在悬崖 reward = -100 P[i * self.ncol + j][a] = [(1, next_state, reward, done)] return P 将上述代码的每一行都进行注释并解释它在这个位置的作用

```python import copy class CliffWalkingEnv: """悬崖漫步环境""" def __init__(self, ncol=9, nrow=5): self.ncol = ncol # 定义网格世界的列 self.nrow = nrow # 定义网格世界的行 # 转移矩阵 P[state][action] = [(p, next_state, reward, done)] # 包含下一个状态和奖励 self.P = self.createP() def createP(self): # 初始化 P = [[[] for j in range(4)] for i in range(self.nrow * self.ncol)] # 4 种动作, change[0]:上, change[1]:下, change[2]:左, change[3]:右。坐标系原点(0,0) # 定义在左上角 change = [[0, -1], [0, 1], [-1, 0], [1, 0]] for i in range(self.nrow): for j in range(self.ncol): for a in range(4): # 位置在悬崖或者目标状态, 因为无法继续交互,任何动作奖励都为 0 if i == self.nrow - 1 and j > 0: P[i * self.ncol + j][a] = [(1, i * self.ncol + j, 0, True)] continue # 其他位置 next_x = min(self.ncol - 1, max(0, j + change[a][0])) next_y = min(self.nrow - 1, max(0, i + change[a][1])) next_state = next_y * self.ncol + next_x reward = -1 done = False # 下一个位置在悬崖或者终点 if next_y == self.nrow - 1 and next_x > 0: done = True if next_x != self.ncol - 1: # 下一个位置在悬崖 reward = -100 P[i * self.ncol + j][a] = [(1, next_state, reward, done)] return P ``` 代码的作用: - `import copy`:导入 copy 模块 - `class CliffWalkingEnv:`:定义名为 CliffWalkingEnv 的类 - `def __init__(self, ncol=9, nrow=5):`:定义类的初始化函数,其中 ncol 和 nrow 分别表示网格世界的列数和行数 - `self.ncol = ncol`:将输入的 ncol 赋值给类内部的 self.ncol - `self.nrow = nrow`:将输入的 nrow 赋值给类内部的 self.nrow - `self.P = self.createP()`:将类的转移矩阵 P 初始化为 createP() 函数的返回值 - `def createP(self):`:定义 createP() 函数来生成转移矩阵 P - `P = [[[] for j in range(4)] for i in range(self.nrow * self.ncol)]`:初始化 P 为空列表,其维度为 (ncol * nrow, 4),即每个状态都有四种动作 - `change = [[0, -1], [0, 1], [-1, 0], [1, 0]]`:定义 change 列表,其中每个元素表示一个动作的坐标变化,分别为上、下、左、右 - `for i in range(self.nrow):`:遍历网格世界的每一行 - `for j in range(self.ncol):`:遍历网格世界的每一列 - `for a in range(4):`:遍历四种动作 - `if i == self.nrow - 1 and j > 0:`:如果当前位置在悬崖或者终点,则任何动作奖励都为 0,此时将转移矩阵 P 的该状态和动作对应的值设为 [(1, i * self.ncol + j, 0, True)],表示只有该状态和动作概率为 1,下一个状态为当前状态,奖励为 0,终止状态为 True - `next_x = min(self.ncol - 1, max(0, j + change[a][0]))`:计算当前动作后下一个状态的横坐标 - `next_y = min(self.nrow - 1, max(0, i + change[a][1]))`:计算当前动作后下一个状态的纵坐标 - `next_state = next_y * self.ncol + next_x`:计算下一个状态的编号 - `reward = -1`:将奖励初始化为 -1 - `done = False`:将终止状态标志初始化为 False - `if next_y == self.nrow - 1 and next_x > 0:`:如果下一个状态是终点,则将终止状态标志设为 True - `if next_x != self.ncol - 1:`:如果下一个状态不是悬崖,则将奖励设为 -100 - `P[i * self.ncol + j][a] = [(1, next_state, reward, done)]`:将该状态和动作对应的转移概率、下一个状态、奖励、终止状态设为 [(1, next_state, reward, done)],表示只有该状态和动作概率为 1,下一个状态为 next_state,奖励为 reward,终止状态为 done - `return P`:返回生成的转移矩阵 P
阅读全文

相关推荐

def table_line(img, size=(512, 512), hprob=0.5, vprob=0.5, row=50, col=30, alph=15): sizew, sizeh = size inputBlob, fx, fy = letterbox_image(img[..., ::-1], (sizew, sizeh)) pred = model.predict(np.array([np.array(inputBlob) / 255.0])) pred = pred[0] vpred = pred[..., 1] > vprob ##竖线 hpred = pred[..., 0] > hprob ##横线 vpred = vpred.astype(int) hpred = hpred.astype(int) colboxes = get_table_line(vpred, axis=1, lineW=col) rowboxes = get_table_line(hpred, axis=0, lineW=row) ccolbox = [] crowlbox = [] if len(rowboxes) > 0: rowboxes = np.array(rowboxes) rowboxes[:, [0, 2]] = rowboxes[:, [0, 2]] / fx rowboxes[:, [1, 3]] = rowboxes[:, [1, 3]] / fy xmin = rowboxes[:, [0, 2]].min() xmax = rowboxes[:, [0, 2]].max() ymin = rowboxes[:, [1, 3]].min() ymax = rowboxes[:, [1, 3]].max() ccolbox = [[xmin, ymin, xmin, ymax], [xmax, ymin, xmax, ymax]] rowboxes = rowboxes.tolist() if len(colboxes) > 0: colboxes = np.array(colboxes) colboxes[:, [0, 2]] = colboxes[:, [0, 2]] / fx colboxes[:, [1, 3]] = colboxes[:, [1, 3]] / fy xmin = colboxes[:, [0, 2]].min() xmax = colboxes[:, [0, 2]].max() ymin = colboxes[:, [1, 3]].min() ymax = colboxes[:, [1, 3]].max() colboxes = colboxes.tolist() crowlbox = [[xmin, ymin, xmax, ymin], [xmin, ymax, xmax, ymax]] rowboxes += crowlbox colboxes += ccolbox rboxes_row_, rboxes_col_ = adjust_lines(rowboxes, colboxes, alph=alph) rowboxes += rboxes_row_ colboxes += rboxes_col_ nrow = len(rowboxes) ncol = len(colboxes) for i in range(nrow): for j in range(ncol): rowboxes[i] = line_to_line(rowboxes[i], colboxes[j], 10) colboxes[j] = line_to_line(colboxes[j], rowboxes[i], 10) return rowboxes, colboxes

大家在看

recommend-type

SM621G1 BA 手册

SM621G1 BA 手册
recommend-type

离散控制Matlab代码-Controls:控制算法

离散控制Matlab代码控制项 该文件夹是控件中经常使用和需要的matlab程序的集合。 许多代码是由作者(Omkar P. Waghmare先生)在密歇根大学安阿伯分校期间开发的。其中一些文件取决于某些模型或其他mfile,但这很明显,并且可以由其他用户轻松修改。 。 作者在代码中掩盖了特定区域,用户可以在其中使更改者出于其目的使用此代码。 这是文件中存在的代码的列表以及有关它们的详细信息: eulerF.m->应用正向或显式euler方法对ODE方程进行积分/离散化。 spacecraft_attitude_dynamics.m->包含航天器姿态动力学 double_intg_pid.m->双积分器的动力学和PID控制 sim_double_intg->模拟Double Integrator(链接到3) Simulating_Vehicle_Cruise_Control.m->模拟车辆巡航控制动力学 KF_application_to_Vehicle_Cruise_Control.m->卡尔曼滤波器实现巡航控制 Cruise_Control_Simulink->具有定速巡航PID控
recommend-type

多模式准谐振反激式开关电源建模验证与容差分析-论文

多模式准谐振反激式开关电源建模验证与容差分析
recommend-type

【最全】全国各省市地区经纬度数据(Json格式)(共收录了3180个城市GPS坐标数据)(收录了全国所有市,区,县 GPS坐标)

(Json格式)全国所有城市经度维度坐标(共收录了3180个城市GPS坐标数据)(收录了全国所有市,区,县 GPS坐标)(包括港澳台)可以直接对应echarts的地图 | 全国所有城市GPS坐标 | 全国所有城市经纬度坐标
recommend-type

RTX 3.6 SDK 基于Windows实时操作系统

RTX 3.6 SDK

最新推荐

recommend-type

储能双向变流器,可实现整流器与逆变器控制,可实现整流与逆变,采用母线电压PI外环与电流内环PI控制,可整流也可逆变实现并网,实现能量双向流动,采用SVPWM调制方式 1.双向 2.SVPWM 3.双

储能双向变流器,可实现整流器与逆变器控制,可实现整流与逆变,采用母线电压PI外环与电流内环PI控制,可整流也可逆变实现并网,实现能量双向流动,采用SVPWM调制方式。 1.双向 2.SVPWM 3.双闭环 支持simulink2022以下版本,联系跟我说什么版本,我给转成你需要的版本(默认发2016b)。
recommend-type

LCC-LCC无线充电恒流 恒压闭环移相控制仿真 Simulink仿真模型,LCC-LCC谐振补偿拓扑,闭环移相控制 1. 输入直流电压350V,负载为切电阻,分别为50-60-70Ω,最大功率3.4

LCC-LCC无线充电恒流 恒压闭环移相控制仿真 Simulink仿真模型,LCC-LCC谐振补偿拓扑,闭环移相控制 1. 输入直流电压350V,负载为切电阻,分别为50-60-70Ω,最大功率3.4kW,最大效率为93.6%。 2. 闭环PI控制:设定值与反馈值的差通过PI环节,输出控制量限幅至0到1之间,控制逆变电路移相占空比。 3. 设置恒压值350V,恒流值7A。
recommend-type

(仿真原件+报告)永磁同步电机转速外环+电流内环控制,采用级连H桥五电平逆变器控制,转速环控制,五电平采用SPWM,且设有死区控制 1.五电平逆变器 2.SPWM,死区控制 3.提供相关参考文献 提

(仿真原件+报告)永磁同步电机转速外环+电流内环控制,采用级连H桥五电平逆变器控制,转速环控制,五电平采用SPWM,且设有死区控制。 1.五电平逆变器 2.SPWM,死区控制 3.提供相关参考文献 提供报告,里面有仿真每个模块的作用,仿真原理与解析。 提供参考文献,提供控制原理。 支持simulink2022以下版本,联系跟我说什么版本,我给转成你需要的版本(默认发2016b)。
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

CC-LINK远程IO模块在环境监控中的应用:技术与案例探讨

![CC-LINK](https://www.mitsubishielectric.com/fa/products/cnt/plcnet/pmerit/cclink_ie/concept/img/main_img.jpg) # 摘要 CC-LINK远程IO模块作为一种先进的工业通信技术,在环境监控系统中具有广泛应用。本文首先概述了CC-LINK远程IO模块的基本概念及其在环境监控系统中的基础理论,包括硬件组成、软件架构及技术优势。随后,详细介绍了其在实时监控与远程控制、系统集成与配置、安全维护方面的具体实践应用。案例分析部分深入探讨了CC-LINK模块在不同环境监控场景中的应用效果与技术解决