tf.keras.layers.leakyrelu
时间: 2023-05-01 17:05:10 浏览: 180
b'tf.keras.layers.leakyrelu' 是 TensorFlow Keras 中的一个层,它实现了 LeakyReLU 激活函数。它将小于 0 的输入值乘以一个小于 1 的斜率,以保留负数部分的一些信息。这个函数在深度学习中广泛使用,可以帮助模型更好地学习并防止过拟合。
相关问题
tcn.add(tf.keras.layers.Dense(64)) tcn.add(tf.keras.layers.LeakyReLU(alpha=0.3))
这段代码是在构建一个Temporal Convolutional Network(TCN)模型中添加了一个64个神经元的全连接层,并使用LeakyReLU激活函数进行激活。TCN是一种用于时间序列数据建模的深度学习架构,其主要特点是通过不同大小的卷积核来捕获不同时间尺度的信息,从而实现对长期依赖关系的建模。LeakyReLU函数是一种修正线性单元(ReLU)的变体,具有负斜率,可以缓解ReLU在负数区域出现的问题。
修改下面代码使其具体生成器的卷积lstm更换为卷积RNN def build_generator(self): def res_net(inputs, filters): x = inputs net = conv2d(x, filters // 2, (1, 1), 1) net = conv2d(net, filters, (3, 3), 1) net = net + x # net=tf.keras.layers.LeakyReLU(0.2)(net) return net def conv2d(inputs, filters, kernel_size, strides): x = tf.keras.layers.Conv2D(filters, kernel_size, strides, 'same')(inputs) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.LeakyReLU(alpha=0.2)(x) return x d0 = tf.keras.layers.Input(shape=(10, 128, 128, 3)) out= tf.keras.layers.ConvLSTM2D(filters=32, kernel_size=3,padding='same')(d0) out=tf.keras.layers.Conv2D(3,1,1,'same')(out) return keras.Model(inputs=d0, outputs=out)
修改如下:
```python
def build_generator(self):
def res_net(inputs, filters):
x = inputs
net = conv2d(x, filters // 2, (1, 1), 1)
net = conv2d(net, filters, (3, 3), 1)
net = net + x
return net
def conv2d(inputs, filters, kernel_size, strides):
x = tf.keras.layers.Conv2D(filters, kernel_size, strides, 'same')(inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.LeakyReLU(alpha=0.2)(x)
return x
d0 = tf.keras.layers.Input(shape=(10, 128, 128, 3))
out = tf.keras.layers.ConvRNN2D(filters=32, kernel_size=3, padding='same')(d0)
out = tf.keras.layers.Conv2D(3, 1, 1, 'same')(out)
return keras.Model(inputs=d0, outputs=out)
```
将 `ConvLSTM2D` 替换为 `ConvRNN2D` 即可,它们的参数意义和使用方法都是一样的。
阅读全文