cnn做一位信号回归预测python代码
时间: 2023-08-13 11:04:28 浏览: 88
以下是使用CNN进行信号回归预测的Python代码示例:
首先,我们需要导入必要的库:
```python
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv1D, MaxPooling1D
from sklearn.model_selection import train_test_split
```
接着,我们读取数据并进行预处理:
```python
# 读取数据
data = pd.read_csv('data.csv')
# 分离输入和输出
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
# 将输入数据转换成3D张量(样本数,时间步,特征数)
X = X.reshape((X.shape[0], X.shape[1], 1))
# 将输出数据进行归一化
y = (y - np.min(y)) / (np.max(y) - np.min(y))
```
接下来,我们将数据集拆分成训练集和测试集:
```python
# 拆分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```
然后,我们构建CNN模型:
```python
# 创建模型
model = Sequential()
# 添加卷积层和池化层
model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(X_train.shape[1], 1)))
model.add(MaxPooling1D(pool_size=2))
model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
# 添加Flatten层和全连接层
model.add(Flatten())
model.add(Dense(units=128, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(units=1, activation='linear'))
# 编译模型
model.compile(optimizer='adam', loss='mse')
```
最后,我们训练模型并进行预测:
```python
# 训练模型
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=50, batch_size=64)
# 进行预测
y_pred = model.predict(X_test)
# 将预测结果进行反归一化
y_pred = y_pred * (np.max(y) - np.min(y)) + np.min(y)
```
以上就是使用CNN进行信号回归预测的Python代码示例。请根据自己的数据集进行调整。
阅读全文