ROI = frame[y1:y2, x1:x2].copy() hsv_img = cv2.cvtColor(ROI, cv2.COLOR_BGR2HSV) lower_hsv_1 = np.array([0, 30, 30]) # 颜色范围低阈值 upper_hsv_1 = np.array([40, 255, 255]) # 颜色范围高阈值 lower_hsv_2 = np.array([140, 30, 30]) # 颜色范围低阈值 upper_hsv_2 = np.array([180, 255, 255]) # 颜色范围高阈值 mask1 = cv2.inRange(hsv_img, lower_hsv_1, upper_hsv_1) mask2 = cv2.inRange(hsv_img, lower_hsv_2, upper_hsv_2) mask = mask1 + mask2 mask = cv2.blur(mask, (3, 3))
时间: 2023-11-23 11:06:19 浏览: 88
这段代码是一个基于HSV颜色空间的图像分割操作,用于提取ROI中特定颜色的物体。首先将ROI部分的图像转换为HSV颜色空间,然后设置两个颜色范围的阈值,分别对应于颜色空间中的两个色相范围。利用这两组阈值,使用cv2.inRange函数分别得到两个二值化的掩模图像,再将这两个图像合并得到最终的掩模图像。最后对掩模图像进行模糊处理,以便更好地消除噪声。
相关问题
请详细解释def color_detect(img,y,x,r): img2=img.copy() #img2=cv2.cvtColor(img,cv2.COLOR_RGB2HSV) #img2=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) d=int(r0.7) col_all=[0.0,0.0,0.0] for i in range(x-d,x+d,1): for j in range(y-d,y+d,1): for k in range(3): col_all[k]+=img2[i,j,k]/(4d*d) #print(col_all) return col_all,并细说col_all具体组成
这段代码定义了一个名为color_detect的函数,其中包括四个参数:img表示输入的图像,y、x、r表示圆形的中心坐标和半径。
函数的作用是在输入的图像中检测出圆形,并将圆形的颜色标识出来。首先,代码将输入的图像复制一份,命名为img2,以免对原图像进行修改。然后,函数会遍历圆形内所有像素点,并针对每个像素点进行操作。运用颜色检测算法,将检测出的像素点的颜色标识出来。最终,函数返回修改过的图像img2。
写出下列代码可以实现什么功能: #Img = cv2.undistort(Img, K, Dist) Img = cv2.resize(Img,(240,180),interpolation=cv2.INTER_AREA) #将opencv读取的图片resize来提高帧率 img = cv2.GaussianBlur(Img, (5, 5), 0) imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # 将BGR图像转为HSV lower = np.array([h_min, s_min, v_min]) upper = np.array([h_max, s_max, v_max]) mask = cv2.inRange(imgHSV, lower, upper) # 创建蒙版 指定颜色上下限 范围内颜色显示 否则过滤 kernel_width = 4 # 调试得到的合适的膨胀腐蚀核大小 kernel_height = 4 # 调试得到的合适的膨胀腐蚀核大小 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_width, kernel_height)) mask = cv2.erode(mask, kernel) mask = cv2.dilate(mask, kernel) mask = cv2.dilate(mask, kernel) light_img = mask[:100,:200 ] cv2.imshow("light",light_img) # 输出红绿灯检测结果 Img1 = Img Img = cv2.cvtColor(Img, cv2.COLOR_BGR2RGB) Img2 = Img cropped2 = Img2[70:128, 0:100] h,w,d = cropped2.shape #提取图像的信息 Img = Image.fromarray(Img) Img = ValImgTransform(Img) # 连锁其它变形,变为tesor Img = torch.unsqueeze(Img, dim=0) # 对tesor进行升维 inputImg = Img.float().to(Device) # 让数据能够使用 OutputImg = Unet(inputImg) Output = OutputImg.cpu().numpy()[0] OutputImg = OutputImg.cpu().numpy()[0, 0] OutputImg = (OutputImg * 255).astype(np.uint8) Input = Img.numpy()[0][0] Input = (Normalization(Input) * 255).astype(np.uint8) OutputImg = cv2.resize(OutputImg,(128,128),interpolation=cv2.INTER_AREA) # 将opencv读取的图片resize来提高帧率 ResultImg = cv2.cvtColor(Input, cv2.COLOR_GRAY2RGB) ResultImg[..., 1] = OutputImg cropped = ResultImg[80:128, 20:100] cropped1 = OutputImg[80:128, 20:100] cv2.imshow("out", cropped1)#显示处理后的图像 cv2.imshow("Img2", Img2) cv2.imshow("Img0", cropped)#显示感兴趣区域图像 print(reached)
这段代码实现的功能是:
1. 读取图像并进行图像去畸变操作,使用cv2.undistort函数。
2. 将图像的大小调整为240x180像素,使用cv2.resize函数。
3. 对图像进行高斯模糊处理,使用cv2.GaussianBlur函数。
4. 将图像从BGR色彩空间转换为HSV色彩空间,使用cv2.cvtColor函数。
5. 创建一个掩码(mask),根据指定的颜色上下限范围过滤出感兴趣的颜色区域,使用cv2.inRange函数。
6. 对掩码进行膨胀和腐蚀操作,使用cv2.erode和cv2.dilate函数。
7. 提取红绿灯区域的图像并显示,使用cv2.imshow函数。
8. 对图像进行一系列处理,包括转换色彩空间、裁剪、调整大小等操作。
9. 使用神经网络模型(Unet)对图像进行处理,并得到处理后的图像。
10. 对处理后的图像进行显示,使用cv2.imshow函数。
11. 打印变量"reached"的值。
请注意,该代码片段缺少一些必要的导入语句和变量定义语句,因此无法单独运行。
阅读全文
相关推荐

















