用混合遗传模拟退火算法求解TSP问题并给出实现代码
时间: 2024-02-11 12:06:30 浏览: 180
TSP问题是一个经典的组合优化问题,它的目标是找到一条经过所有给定城市并回到起点的最短路径。混合遗传模拟退火算法(Hybrid Genetic Simulated Annealing Algorithm,HGSA)是一种结合了遗传算法和模拟退火算法的优化算法,可以用于求解TSP问题。
以下是使用Python实现HGSA算法求解TSP问题的示例代码:
```python
import numpy as np
import random
# TSP问题中的城市坐标
cities = np.array([[60, 200], [180, 200], [80, 180], [140, 180], [20, 160], [100, 160], [200, 160], [140, 140], [40, 120], [100, 120], [180, 100], [60, 80], [120, 80], [180, 60], [20, 40], [100, 40], [200, 40], [20, 20], [60, 20], [160, 20]])
# 计算两个城市之间的距离
def distance(city1, city2):
return np.sqrt(np.sum((city1 - city2) ** 2))
# 计算路径的总长度
def path_length(path):
length = 0
for i in range(len(path) - 1):
length += distance(cities[path[i]], cities[path[i+1]])
length += distance(cities[path[-1]], cities[path[0]])
return length
# 初始化种群
def init_population(pop_size, num_cities):
population = []
for i in range(pop_size):
path = list(range(num_cities))
random.shuffle(path)
population.append(path)
return population
# 交叉操作
def crossover(parent1, parent2):
child = [-1] * len(parent1)
start, end = sorted([random.randint(0, len(parent1)-1) for _ in range(2)])
for i in range(start, end+1):
child[i] = parent1[i]
j = 0
for i in range(len(parent2)):
if parent2[i] not in child:
if child[j] == -1:
child[j] = parent2[i]
j += 1
return child
# 变异操作
def mutation(path):
path = path.copy()
start, end = sorted([random.randint(0, len(path)-1) for _ in range(2)])
path[start:end+1] = reversed(path[start:end+1])
return path
# 模拟退火操作
def simulated_annealing(path, temperature):
old_length = path_length(path)
new_path = mutation(path)
new_length = path_length(new_path)
if new_length < old_length:
return new_path
else:
delta = new_length - old_length
probability = np.exp(-delta / temperature)
if random.random() < probability:
return new_path
else:
return path
# 适应度函数
def fitness(path):
return 1 / path_length(path)
# 选择操作
def selection(population, fitness_values):
idx = np.random.choice(len(population), size=2, p=fitness_values/fitness_values.sum(), replace=False)
return population[idx[0]], population[idx[1]]
# HGSA算法
def hgsa(pop_size, num_cities, max_iter):
population = init_population(pop_size, num_cities)
for i in range(max_iter):
# 交叉操作
new_population = []
fitness_values = np.array([fitness(path) for path in population])
for j in range(pop_size // 2):
parent1, parent2 = selection(population, fitness_values)
child1 = crossover(parent1, parent2)
child2 = crossover(parent2, parent1)
new_population.append(child1)
new_population.append(child2)
# 模拟退火操作
for j in range(pop_size):
temperature = (max_iter - i) / max_iter
new_population[j] = simulated_annealing(new_population[j], temperature)
population = new_population
# 返回最优解
fitness_values = np.array([fitness(path) for path in population])
idx = np.argmax(fitness_values)
return population[idx], path_length(population[idx])
# 测试代码
path, length = hgsa(100, len(cities), 1000)
print("最短路径:", path)
print("路径长度:", length)
```
在上面的代码中,我们首先定义了TSP问题中的城市坐标,然后实现了计算两个城市之间距离、计算路径总长度、初始化种群、交叉操作、变异操作、模拟退火操作、适应度函数和选择操作等函数。最后,我们使用HGSA算法求解TSP问题,并输出最优解的路径和长度。
需要注意的是,上面的代码只是一个示例,实际应用中需要根据具体问题进行调整和优化。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![.pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pptx](https://img-home.csdnimg.cn/images/20241231044947.png)