set(est.fit_transform(x).ravel())

时间: 2024-04-19 19:25:53 浏览: 10
这段代码是使用 `fit_transform` 方法将输入数据 `x` 进行拟合和转换,并通过 `ravel` 方法将结果展平为一维数组,最后使用 `set` 函数得到转换后的唯一值的集合。 这里的 `est` 可能是一个机器学习模型或者转换器对象的实例,例如 `OrdinalEncoder` 或其他类似的对象。在这个示例中,它被假设为已经实例化并命名为 `est`。 注意,这段代码的目的是获取输入数据经过转换后的唯一值的集合。如果你需要更具体的帮助,请提供更多上下文或问题的详细说明。
相关问题

import pandas as pd import numpy as np from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import PolynomialFeatures from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import f_regression from sklearn.model_selection import train_test_split # 读取 Excel 文件 data = pd.read_excel('D://数据1.xlsx', sheet_name='000') # 把数据分成输入和输出 X = data.iloc[:, 0:4].values y = data.iloc[:, 0:4].values # 标准化处理 scaler = StandardScaler() X = scaler.fit_transform(X) # 添加多项式特征 poly = PolynomialFeatures(degree=2, include_bias=False) X = poly.fit_transform(X) # 特征选择 selector = SelectKBest(f_regression, k=3) X = selector.fit_transform(X, y) # 将数据分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 创建岭回归模型 model = Ridge(alpha=0.2) # 拟合模型 model.fit(X_train, y_train) # 使用模型进行预测 y_pred = model.predict(X_test) # 将预测结果四舍五入取整 y_pred = np.round(y_pred) # 去除重复行 y_pred = np.unique(y_pred, axis=0) # 打印预测结果 print(y_pred)这个代码里面我怎么加入y.ravel() 函数将 y 转换为一维数组

在这个代码中,我们需要将 `y` 转换为一维数组,可以使用 `y.ravel()` 函数来实现。修改后的代码如下: ```python import pandas as pd import numpy as np from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import PolynomialFeatures from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import f_regression from sklearn.model_selection import train_test_split # 读取 Excel 文件 data = pd.read_excel('D://数据1.xlsx', sheet_name='000') # 把数据分成输入和输出 X = data.iloc[:, 0:4].values y = data.iloc[:, 4].values # 将 y 修改为第 5 列的数据 y = y.ravel() # 将 y 转换为一维数组 # 标准化处理 scaler = StandardScaler() X = scaler.fit_transform(X) # 添加多项式特征 poly = PolynomialFeatures(degree=2, include_bias=False) X = poly.fit_transform(X) # 特征选择 selector = SelectKBest(f_regression, k=3) X = selector.fit_transform(X, y) # 将数据分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 创建岭回归模型 model = Ridge(alpha=0.2) # 拟合模型 model.fit(X_train, y_train) # 使用模型进行预测 y_pred = model.predict(X_test) # 将预测结果四舍五入取整 y_pred = np.round(y_pred) # 去除重复行 y_pred = np.unique(y_pred, axis=0) # 打印预测结果 print(y_pred) ``` 在这个代码中,我们将 `y` 修改为 Excel 文件中的第 5 列的数据,然后使用 `y.ravel()` 将其转换为一维数组。这样,就可以避免在特征选择过程中出现错误提示。

linear_fit = LinearRegression().fit(x, y) logit_fit = LogisticRegression().fit(x, y.ravel()) prob_fit = GaussianNB().fit(x, y.ravel()) coef_mat = np.column_stack((prob_fit.theta.T, logit_fit.coef_, linear_fit.coef_)) print(coef_mat) prop_mat = np.column_stack((prob_fit.theta_.T / logit_fit.coef_, prob_fit.theta_.T / linear_fit.coef_, logit_fit.coef_ / linear_fit.coef_)) 解释一下每行代码

这段代码主要用于对输入数据进行三种不同的模型拟合,然后计算模型系数并进行比较和分析。具体每行代码的含义如下: ``` python linear_fit = LinearRegression().fit(x, y) ``` 使用线性回归模型对输入数据 x 和 y 进行拟合,并将拟合结果保存在 linear_fit 变量中。 ``` python logit_fit = LogisticRegression().fit(x, y.ravel()) ``` 使用逻辑回归模型对输入数据 x 和 y 进行拟合,并将拟合结果保存在 logit_fit 变量中。需要注意的是,这里将 y 转换为一维数组,以满足逻辑回归模型的输入要求。 ``` python prob_fit = GaussianNB().fit(x, y.ravel()) ``` 使用高斯朴素贝叶斯模型对输入数据 x 和 y 进行拟合,并将拟合结果保存在 prob_fit 变量中。同样需要将 y 转换为一维数组。 ``` python coef_mat = np.column_stack((prob_fit.theta.T, logit_fit.coef_, linear_fit.coef_)) ``` 将三种模型的系数按列方向拼接成一个矩阵 coef_mat,并将其保存在变量中。其中,prob_fit.theta.T 表示高斯朴素贝叶斯模型的均值向量,logit_fit.coef_ 表示逻辑回归模型的系数向量,linear_fit.coef_ 表示线性回归模型的系数向量。 ``` python print(coef_mat) ``` 输出拼接后的系数矩阵 coef_mat,用于查看模型系数的取值。 ``` python prop_mat = np.column_stack((prob_fit.theta_.T / logit_fit.coef_, prob_fit.theta_.T / linear_fit.coef_, logit_fit.coef_ / linear_fit.coef_)) ``` 计算三种模型系数之间的比例,并将比例矩阵 prop_mat 保存在变量中。其中,prob_fit.theta_.T 表示高斯朴素贝叶斯模型的方差向量,用于计算与其他模型系数的比例。 这段代码主要用于分析和比较三种不同的模型在给定数据上的表现,并通过系数比例来进一步分析模型的特点和差异。

相关推荐

df = pd.read_csv('车辆:1499序:2结果数据换算单位.csv') scaler = MinMaxScaler() df[['本车速度', '车头间距', '原车道前车速度', '本车加速度']] = scaler.fit_transform(df[['本车速度', '车头间距', '原车道前车速度', '本车加速度']]) #接下来,我们将数据集分成训练集和测试集 train_size = int(len(df) * 0.8) train = df[:train_size] test = df[train_size:] #然后,我们将数据转换成3D数组,以便于CNN-LSTM模型的处理 def create_dataset(X, y, time_steps=1): Xs, ys = [], [] for i in range(len(X) - time_steps): Xs.append(X.iloc[i:(i + time_steps)].values) ys.append(y.iloc[i + time_steps]) return np.array(Xs), np.array(ys) TIME_STEPS = 10 X_train, y_train = create_dataset(train[['本车速度', '车头间距', '原车道前车速度']], train['本车加速度'], time_steps=TIME_STEPS) X_test, y_test = create_dataset(test[['本车速度', '车头间距', '原车道前车速度']], test['本车加速度'], time_steps=TIME_STEPS) #接下来,我们定义并构建CNN-LSTM模型 model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(TIME_STEPS, 3))) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(RepeatVector(1)) model.add(LSTM(64, activation='relu', return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(32, activation='relu', return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') #最后,我们训练模型,并进行预测 model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.1, verbose=1) train_predict = model.predict(X_train) test_predict = model.predict(X_test) train_predict = scaler.inverse_transform(train_predict) y_train = scaler.inverse_transform([y_train]) test_predict = scaler.inverse_transform(test_predict) y_test = scaler.inverse_transform([y_test])

翻译这段代码class GPR: def __init__(self, optimize=True): self.is_fit = False self.train_X, self.train_y = None, None self.params = {"l": 2, "sigma_f": 1} self.optimize = optimize def fit(self, X, y): # store train data self.train_X = np.asarray(X) self.train_y = np.asarray(y) # hyper parameters optimization def negative_log_likelihood_loss(params): self.params["l"], self.params["sigma_f"] = params[0], params[1] Kyy = self.kernel(self.train_X, self.train_X) + 1e-8 * np.eye(len(self.train_X)) loss = 0.5 * self.train_y.T.dot(np.linalg.inv(Kyy)).dot(self.train_y) + 0.5 * np.linalg.slogdet(Kyy)[ 1] + 0.5 * len(self.train_X) * np.log(2 * np.pi) return loss.ravel() if self.optimize: res = minimize(negative_log_likelihood_loss, [self.params["l"], self.params["sigma_f"]],bounds=((1e-4, 1e4), (1e-4, 1e4)),method='L-BFGS-B') self.params["l"], self.params["sigma_f"] = res.x[0], res.x[1] self.is_fit = True def predict(self, X): if not self.is_fit: print("GPR Model not fit yet.") return X = np.asarray(X) Kff = self.kernel(self.train_X, self.train_X) # (N, N) Kyy = self.kernel(X, X) # (k, k) Kfy = self.kernel(self.train_X, X) # (N, k) Kff_inv = np.linalg.inv(Kff + 0.5e-3 * np.eye(len(self.train_X))) # (N, N) mu = Kfy.T.dot(Kff_inv).dot(self.train_y) cov = Kyy - Kfy.T.dot(Kff_inv).dot(Kfy) return mu, cov def kernel(self, x1, x2): dist_matrix = np.sum(x1 ** 2, 1).reshape(-1, 1) + np.sum(x2 ** 2, 1) - 2 * np.dot(x1, x2.T) return self.params["sigma_f"] ** 2 * np.exp(-0.5 / self.params["l"] ** 2 * dist_matrix)

最新推荐

recommend-type

基于Java实现的明日知道系统.zip

基于Java实现的明日知道系统
recommend-type

NX二次开发uc1653 函数介绍

NX二次开发uc1653 函数介绍,Ufun提供了一系列丰富的 API 函数,可以帮助用户实现自动化、定制化和扩展 NX 软件的功能。无论您是从事机械设计、制造、模具设计、逆向工程、CAE 分析等领域的专业人士,还是希望提高工作效率的普通用户,NX 二次开发 Ufun 都可以帮助您实现更高效的工作流程。函数覆盖了 NX 软件的各个方面,包括但不限于建模、装配、制图、编程、仿真等。这些 API 函数可以帮助用户轻松地实现自动化、定制化和扩展 NX 软件的功能。例如,用户可以通过 Ufun 编写脚本,自动化完成重复性的设计任务,提高设计效率;或者开发定制化的功能,满足特定的业务需求。语法简单易懂,易于学习和使用。用户可以快速上手并开发出符合自己需求的 NX 功能。本资源内容 提供了丰富的中英文帮助文档,可以帮助用户快速了解和使用 Ufun 的功能。用户可以通过资源中的提示,学习如何使用 Ufun 的 API 函数,以及如何实现特定的功能。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、