PSO优化LSTM的python,pytorch代码
时间: 2023-11-12 22:41:14 浏览: 97
文本分类小说的Bayes(贝叶斯)优化LSTM-pytorch框架实现(包含完整代码)
以下是使用PyTorch实现PSO优化LSTM的Python代码示例:
```python
import torch
import torch.nn as nn
import numpy as np
# 定义LSTM模型
class LSTM(nn.Module):
def __init__(self, input_dim, hidden_dim, layer_dim, output_dim):
super(LSTM, self).__init__()
self.hidden_dim = hidden_dim
self.layer_dim = layer_dim
self.lstm = nn.LSTM(input_dim, hidden_dim, layer_dim, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_()
c0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_()
out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))
out = self.fc(out[:, -1, :])
return out
# 定义PSO算法
class PSO():
def __init__(self, pop_size, dim, max_iter, lr, c1, c2, w):
self.pop_size = pop_size
self.dim = dim
self.max_iter = max_iter
self.lr = lr
self.c1 = c1
self.c2 = c2
self.w = w
self.v = torch.zeros((pop_size, dim))
self.pos = torch.rand((pop_size, dim))
self.fitness = torch.zeros(pop_size)
self.pbest = self.pos.clone()
self.gbest = self.pos[0].clone()
def update(self, fitness):
self.fitness = fitness
self.pbest = torch.where(fitness > self.fitness, self.pos, self.pbest)
self.gbest = self.pos[self.fitness.argmax()]
r1 = torch.rand((self.pop_size, self.dim))
r2 = torch.rand((self.pop_size, self.dim))
self.v = self.w * self.v + self.c1 * r1 * (self.pbest - self.pos) + self.c2 * r2 * (self.gbest - self.pos)
self.pos = self.pos + self.lr * self.v
# 定义损失函数
def loss_fn(y_pred, y_true):
criterion = nn.MSELoss()
loss = criterion(y_pred, y_true)
return loss
# 定义训练函数
def train(model, pso, x_train, y_train):
for i in range(pso.max_iter):
fitness = torch.zeros(pso.pop_size)
for j in range(pso.pop_size):
# 使用pso算法更新模型参数
model.load_state_dict(dict(zip(model.state_dict().keys(), pso.pos[j])))
# 计算模型损失
y_pred = model(x_train)
loss = loss_fn(y_pred, y_train)
fitness[j] = 1 / (1 + loss.item())
# 更新pso算法参数
pso.update(fitness)
# 使用最优参数重新训练模型
model.load_state_dict(dict(zip(model.state_dict().keys(), pso.gbest)))
y_pred = model(x_train)
loss = loss_fn(y_pred, y_train)
return model, loss.item()
# 模型参数
input_dim = 1
hidden_dim = 32
layer_dim = 2
output_dim = 1
# 训练数据
x_train = np.array([[i] for i in range(100)])
y_train = np.sin(x_train)
# 定义模型和PSO算法
model = LSTM(input_dim, hidden_dim, layer_dim, output_dim)
pso = PSO(pop_size=10, dim=sum(p.numel() for p in model.parameters()), max_iter=100, lr=0.01, c1=2, c2=2, w=0.7)
# 训练模型
model, loss = train(model, pso, torch.tensor(x_train).float().unsqueeze(dim=0), torch.tensor(y_train).float().unsqueeze(dim=0))
# 打印损失值和预测结果
print('loss:', loss)
print('prediction:', model(torch.tensor(x_train).float().unsqueeze(dim=0)).detach().numpy())
```
阅读全文