img_path = "pic.jpg" img = Image.open(img_path),pic.jpg为单通道图片,如何修改为三通道代码
时间: 2023-06-20 18:09:33 浏览: 145
如果pic.jpg是单通道灰度图像,你可以使用PIL库将其转换为三通道的RGB图像,代码如下:
``` python
from PIL import Image
img_path = "pic.jpg"
img = Image.open(img_path).convert("RGB")
```
这里使用了 `convert()` 函数将单通道图片转换为RGB格式。
相关问题
import os import shutil import PIL.Image as Image import cv2 import numpy as np import pandas as pd def selet_pic(imgpath,labpath): pic_path = os.listdir(labpath) list = [] for alldir in pic_path: child = os.path.join(labpath,alldir) img = Image.open(child) # img.show() pic_arrays = np.array(img) #将图片转化成数组 if np.mean(pic_arrays) == 0: # print("图片为黑色",alldir) list.append(alldir) # print(list) return list def del_pic(list): for i in list: img_path = os.path.join(imgpath,i) lab_path = os.path.join(labpath,i) print(lab_path) os.remove(img_path) #直接删除 os.remove(lab_path) # shutil.move(img_path, img_del_path) # shutil.move(lab_path,lab_del_path) #移到指定位置 if __name__== "__main__": imgpath = r'D:\shiyan\img\waterbody\water\img_256' labpath = r'D:\shiyan\img\waterbody\water\label_256' list = selet_pic(imgpath,labpath) # del_pic(list,img_del_path,lab_del_path) del_pic(list)
这段代码定义了两个函数`selet_pic`和`del_pic`,并在`if __name__== "__main__":`语句下面进行调用。具体来说,代码的作用是:
1. `selet_pic`函数:该函数接受两个参数`imgpath`和`labpath`,分别表示图片文件和标签文件所在的目录。在该函数中,首先通过`os.listdir`获取标签文件目录下的所有文件名,并将它们存储在`pic_path`列表中。然后,遍历该列表中的每一个文件名,将其拼接为完整的路径,读取对应的图片文件并将其转化成数组形式。接着,判断该数组的平均值是否等于0,如果是,则将该文件名添加到`list`列表中。最后,返回`list`列表。
2. `del_pic`函数:该函数接受一个参数`list`,表示要删除的文件名列表。在该函数中,遍历`list`列表中的每一个文件名,将其拼接为完整的路径,并使用`os.remove`函数直接删除对应的图片文件和标签文件。
3. 在`if __name__== "__main__":`语句下面,定义了`imgpath`和`labpath`两个变量,分别表示图片文件和标签文件所在的目录。接着,调用`selet_pic`函数获取需要删除的文件名列表,然后调用`del_pic`函数删除对应的文件。
from bm3d import bm3d_rgb from experiment_funcs1 import get_experiment_noise, get_psnr, get_cropped_psnr from PIL import Image import argparse import os import torch import numpy as np from torchvision.utils import save_image def main(): imagename = './test_image1/(1271).jpg' save_dir = 'test_result' save_path = 'noise' y = np.array(Image.open(imagename)) / 255 noise_type = 'g3' noise_var = 0.02 seed = 0 noise, psd, kernel = get_experiment_noise(noise_type, noise_var, seed, y.shape) z = np.atleast_3d(y) + np.atleast_3d(noise) y_est = bm3d_rgb(z, psd) psnr = get_psnr(y, y_est) print("PSNR:", psnr) y_est = np.minimum(np.maximum(y_est, 0), 1) z_rang = np.minimum(np.maximum(z, 0), 1) z_rang = torch.from_numpy(np.transpose(z_rang, (2, 0, 1))).float() y_est = torch.from_numpy(np.transpose(y_est, (2, 0, 1))).float() denoise_img_path = os.path.join(save_dir, 'denoised.jpg') save_image(y_est, denoise_img_path) noise_img_path = os.path.join(save_path, 'noise.jpg') save_image(z_rang, noise_img_path) if __name__ == '__main__': main()改为对灰度图处理
可以将代码中的`bm3d_rgb`函数改为`bm3d`函数,同时将读入图像的方式改为读入灰度图像即可。具体代码如下:
```
from bm3d import bm3d
from experiment_funcs1 import get_experiment_noise, get_psnr, get_cropped_psnr
from PIL import Image
import argparse
import os
import torch
import numpy as np
from torchvision.utils import save_image
def main():
imagename = './test_image1/(1271).jpg'
save_dir = 'test_result'
save_path = 'noise'
y = np.array(Image.open(imagename).convert('L')) / 255
noise_type = 'g3'
noise_var = 0.02
seed = 0
noise, psd, kernel = get_experiment_noise(noise_type, noise_var, seed, y.shape)
z = y + noise
y_est = bm3d(z, psd)
psnr = get_psnr(y, y_est)
print("PSNR:", psnr)
y_est = np.minimum(np.maximum(y_est, 0), 1)
z_rang = np.minimum(np.maximum(z, 0), 1)
z_rang = torch.from_numpy(z_rang).unsqueeze(0).float()
y_est = torch.from_numpy(y_est).unsqueeze(0).float()
denoise_img_path = os.path.join(save_dir, 'denoised.jpg')
save_image(y_est, denoise_img_path)
noise_img_path = os.path.join(save_path, 'noise.jpg')
save_image(z_rang, noise_img_path)
if __name__ == '__main__':
main()
```
阅读全文