num_pixels = numel(dark_channel);

时间: 2024-03-11 11:46:11 浏览: 16
这是一个用于计算图像像素总数的操作。其中,numel是MATLAB中的一个函数,可以返回一个矩阵或向量中的元素总数。在这里,dark_channel是一个二维矩阵,表示图像的暗通道图像,通过计算dark_channel中的元素总数,可以得到整张图像中像素的总数。该值将用于后续计算大气光照值和全局大气散射系数时的归一化操作。
相关问题

function [one_feat_sps, weight_pool_info]=do_sp_pooling(one_feat_img, one_sp_info) img_size=size(one_feat_img); num_units=img_size(1)*img_size(2); dim=img_size(3); one_feat_img=reshape(one_feat_img, [num_units dim]); img_size_org=one_sp_info.img_size; pixel_ind_map=reshape([1: num_units], [img_size(1) img_size(2)]); pixel_ind_map_org=imresize(pixel_ind_map, img_size_org, 'nearest'); pixel_ind_sps=one_sp_info.pixel_ind_sps; num_sp=numel(pixel_ind_sps); weight_pool_info=zeros([num_sp, num_units], 'like', one_feat_img); for idx_sp=1:num_sp pixel_ind_sp_one=pixel_ind_sps{idx_sp}; ind_pixels_in_map=pixel_ind_map_org(pixel_ind_sp_one); [ind_units,~,uniqueIndex] = unique(ind_pixels_in_map); frequency = accumarray(uniqueIndex(:),1)./numel(ind_pixels_in_map); frequency=single(frequency); freq_one_sp=zeros(1, num_units, 'single'); freq_one_sp(ind_units)=frequency; weight_pool_info(idx_sp, :)=freq_one_sp; end one_feat_sps=weight_pool_info*one_feat_img; end将上述代码转换为pytorch代码,并可视化超像素的索引】

以下是将给定的 MATLAB 代码转换为 PyTorch 代码的过程: ``` import torch import torch.nn.functional as F import numpy as np from scipy import ndimage def do_sp_pooling(one_feat_img, one_sp_info): img_size = one_feat_img.shape num_units = img_size[0] * img_size[1] dim = img_size[2] one_feat_img = one_feat_img.reshape(num_units, dim) img_size_org = one_sp_info['img_size'] pixel_ind_map = np.arange(num_units).reshape(img_size[0], img_size[1]) pixel_ind_map_org = ndimage.zoom(pixel_ind_map, [img_size_org[0]/img_size[0], img_size_org[1]/img_size[1]], order=0) pixel_ind_sps = one_sp_info['pixel_ind_sps'] num_sp = len(pixel_ind_sps) weight_pool_info = torch.zeros((num_sp, num_units), dtype=one_feat_img.dtype, device=one_feat_img.device) for idx_sp in range(num_sp): pixel_ind_sp_one = pixel_ind_sps[idx_sp] ind_pixels_in_map = pixel_ind_map_org[pixel_ind_sp_one] _, uniqueIndex = np.unique(ind_pixels_in_map, return_inverse=True) frequency = np.bincount(uniqueIndex) / len(ind_pixels_in_map) frequency = frequency.astype(one_feat_img.dtype) freq_one_sp = torch.zeros(num_units, dtype=one_feat_img.dtype, device=one_feat_img.device) freq_one_sp[ind_pixels_in_map] = torch.tensor(frequency, dtype=one_feat_img.dtype, device=one_feat_img.device) weight_pool_info[idx_sp, :] = freq_one_sp one_feat_sps = torch.mm(weight_pool_info, one_feat_img) return one_feat_sps, weight_pool_info ``` 这里我们使用了 PyTorch 库中的相关函数来实现对应功能,同时为了可视化超像素的索引,我们可以在函数中增加一些代码: ``` def do_sp_pooling(one_feat_img, one_sp_info): img_size = one_feat_img.shape num_units = img_size[0] * img_size[1] dim = img_size[2] one_feat_img = one_feat_img.reshape(num_units, dim) img_size_org = one_sp_info['img_size'] pixel_ind_map = np.arange(num_units).reshape(img_size[0], img_size[1]) pixel_ind_map_org = ndimage.zoom(pixel_ind_map, [img_size_org[0]/img_size[0], img_size_org[1]/img_size[1]], order=0) pixel_ind_sps = one_sp_info['pixel_ind_sps'] num_sp = len(pixel_ind_sps) weight_pool_info = torch.zeros((num_sp, num_units), dtype=one_feat_img.dtype, device=one_feat_img.device) for idx_sp in range(num_sp): pixel_ind_sp_one = pixel_ind_sps[idx_sp] ind_pixels_in_map = pixel_ind_map_org[pixel_ind_sp_one] _, uniqueIndex = np.unique(ind_pixels_in_map, return_inverse=True) frequency = np.bincount(uniqueIndex) / len(ind_pixels_in_map) frequency = frequency.astype(one_feat_img.dtype) freq_one_sp = torch.zeros(num_units, dtype=one_feat_img.dtype, device=one_feat_img.device) freq_one_sp[ind_pixels_in_map] = torch.tensor(frequency, dtype=one_feat_img.dtype, device=one_feat_img.device) weight_pool_info[idx_sp, :] = freq_one_sp # 可视化超像素的索引 img_sp = np.zeros_like(pixel_ind_map_org) img_sp[pixel_ind_sp_one//img_size[1], pixel_ind_sp_one%img_size[1]] = 1 img_sp = ndimage.binary_dilation(img_sp, iterations=1) img_sp = np.where(img_sp, idx_sp+1, 0) img_sp = ndimage.zoom(img_sp, [img_size[0]/img_size_org[0], img_size[1]/img_size_org[1]], order=0) plt.imshow(img_sp, cmap='jet', alpha=0.3, vmin=0, vmax=num_sp) one_feat_sps = torch.mm(weight_pool_info, one_feat_img) return one_feat_sps, weight_pool_info ``` 这里我们使用 matplotlib 库来绘制可视化结果,以 jet 颜色映射来表示超像素的索引。

% 生成待传输的数据 data = randi([0 1], 1, 10000); % 对数据进行编码 dict = huffmandict([0 1], [0.5 0.5]); encoded_data = huffmanenco(data, dict); % 模拟信道传输 received_data = BSC(encoded_data, 0.1); % 对接收到的数据进行解码 decoded_data = huffmandeco(received_data, dict); % 计算码率和压缩比 original_length = numel(data); encoded_length = numel(encoded_data); compressed_length = encoded_length / original_length; compression_ratio = original_length / encoded_length;

这段代码实现了一个简单的Huffman编码和解码过程,并且计算了码率和压缩比。如果您想绘制码率和压缩比之间的关系图,您可以在此基础上进行如下修改: 1. 修改数据生成方式,生成不同长度的数据,并分别计算对应的码率和压缩比。 2. 对于每个数据长度,重复多次实验,计算平均码率和平均压缩比,以减少随机误差。 3. 使用MATLAB内置函数plot绘制码率和压缩比之间的关系图。 下面是一个示例代码: ``` % 生成不同长度的数据并计算对应的码率和压缩比 data_lengths = [100 500 1000 5000 10000]; num_experiments = 10; % 重复实验的次数 compression_ratios = zeros(size(data_lengths)); code_rates = zeros(size(data_lengths)); for i = 1:numel(data_lengths) data = randi([0 1], 1, data_lengths(i)); dict = huffmandict([0 1], [0.5 0.5]); encoded_data = huffmanenco(data, dict); original_length = numel(data); encoded_length = numel(encoded_data); compression_ratio = original_length / encoded_length; code_rate = 1 / mean(histcounts(encoded_data, 'Normalization', 'probability')); for j = 2:num_experiments encoded_data = huffmanenco(data, dict); encoded_length = numel(encoded_data); compression_ratio = compression_ratio + original_length / encoded_length; code_rate = code_rate + 1 / mean(histcounts(encoded_data, 'Normalization', 'probability')); end compression_ratios(i) = compression_ratio / num_experiments; code_rates(i) = code_rate / num_experiments; end % 绘制码率和压缩比之间的关系图 plot(compression_ratios, code_rates, '-o'); xlabel('Compression ratio'); ylabel('Code rate'); title('Huffman coding performance'); ``` 以上代码会生成一个简单的Huffman编码和解码过程,并绘制码率和压缩比之间的关系图。您可以根据需要进行修改和调整。

相关推荐

% 指定包含SEM图像的目录 image_dir = 'D:\MATLAB\R2018a\bin\灰岩12个\样7\500X\'; % 从目录中读取图像文件名列表 image_files = dir(fullfile(image_dir, '*.tiff')); % K-均值聚类的参数 num_clusters = 3; % 簇数(可以更改此值) max_iterations = 100; % 最大迭代次数(可以更改此值) % 初始化矩阵以存储群集映像和群集中心 num_images = numel(image_files); % 计算图像文件数 clustered_images = cell(1, num_images); cluster_centers_all = cell(1, num_images); % 循环浏览每个图像文件 for i = 1:num_images % 读取当前图像并规范化 image_path = fullfile(image_dir, image_files(i).name); image_data = double(imread(image_path))/ 255; % 执行K-means聚类 [cluster_indices, cluster_centers] = kmeans(reshape(image_data,[],size(image_data,3)), num_clusters,'MaxIter',max_iterations); % 将聚集的数据重新整形为图像维度 clustered_images{i} = reshape(cluster_indices, size(image_data,1),size(image_data,2)); % 将聚类图像转换成彩色图像 RGB = zeros(size(image_data)); for j = 1:num_clusters RGB(:,:,j) = (clustered_images{i} == j); end RGB = bsxfun(@times, RGB, reshape(cluster_centers, 1,1,[])); clustered_images{i} = RGB; % 保存聚类后的图像到文件夹 [pathstr, name, ext] = fileparts(image_path); imwrite(uint8(RGB*255), fullfile(pathstr, [name '_clustered' ext])); end % 显示原始图像和群集图像 for i = 1:num_images figure; subplot(1, num_clusters + 1, 1); imshow(imread(fullfile(image_dir, image_files(i).name))); title('Original Image'); for j = 1:num_clusters subplot(1, num_clusters + 1, j + 1); imshow(clustered_images{i}); title(sprintf('Cluster %d', j)); end end % 计算孔隙率 porosity = zeros(1, num_images); for i = 1:num_images % 统计原始图像中的像素数 img_pixels = numel(imread(fullfile(image_dir, image_files(i).name))); % 统计聚类图像中标记为第一个簇的像素数 cluster_pixels = sum(sum(clustered_images{i}(:,:,1) > 0)); % 计算孔隙率 porosity(i)=(1 - (cluster_pixels / img_pixels))*100; end % 显示计算后的孔隙率 for i = 1:num_images fprintf('Image %d: Porosity = %f\n', i, porosity(i)); end

filename = 'lowshiyan.xlsx'; sheet = 1; [num,txt,raw] = xlsread(filename, sheet); % 添加标签 G = num(:,1); P = num(:,2); T = num(:,3); M = num(:,4); F = num(:,5); Ta = num(:,6); num_images = size(num, 1); image_size = [10, 10]; data_images = zeros([image_size, num_images]); for k = 1:num_images num_elements = numel(num(k,1:5)); num_rows = ceil(num_elements/image_size(1)); image_matrix = reshape(num(k,1:5), num_rows, [])'; % 转置后再reshape resized_image_matrix = imresize([image_matrix, zeros(5, 1)], [10, 2]); % 在右边添加空列将大小从5x1扩展到5x2 resized_image_matrix = resized_image_matrix(:, 1:end-1); % 删除添加的空列 Ta_matrix = Ta(k); % 取第六列数据作为输出数据 image_10by10 = imresize(resized_image_matrix, [10, 10]); % 将大小调整为10x10 data_images(:,:,k) = mat2gray(image_10by10); Ta_images(k) = Ta_matrix; % 存储输出数据 end % 保存输入数据 if ~exist('input_images', 'dir') mkdir('input_images'); % 创建新的文件夹用于存储图像 end for k = 1:num_images input_filename = sprintf('input_images/%d.jpg', k); imwrite(data_images(:,:,k), input_filename, 'jpg'); end % 保存输出数据 if ~exist('output_data', 'dir') mkdir('output_data') % 创建新的文件夹用于存储输出数据 end for k = 1:num_images output_filename = sprintf('output_data/%d.txt', k); dlmwrite(output_filename, Ta_images(k), 'precision', '%.6f'); end % 创建ImageDatastore对象 imds = imageDatastore('input_images', 'FileExtensions', '.jpg', 'LabelSource', 'foldernames'); imds.ReadFcn = @(filename)imresize(imread(filename), [32, 32]); % 调整图像大小为32x32 % 添加输出数据 outputds = tabularTextDatastore('output_data/*.txt', 'ReadVariableNames', false); imds = combine(imds, outputds); % 划分训练集和测试集 [trainImds, testImds] = splitEachLabel(imds, 0.8, 'randomized');检查对函数 'splitEachLabel' 的调用中是否存在不正确的参数数据类型或缺少参数。怎么修改,请给出修改后代码

最新推荐

recommend-type

Python优秀项目 基于Flask+MySQL实现的玩具电子商务网站源码+部署文档+数据资料.zip

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 Python优秀项目 基于Flask+MySQL实现的玩具电子商务网站源码+部署文档+数据资料.zip 1、代码压缩包内容 代码的项目文件 部署文档文件 2、代码运行版本 python3.7或者3.7以上的版本;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细) 3、运行操作步骤 步骤一:将代码的项目目录使用IDEA打开(IDEA要配置好python环境) 步骤二:根据部署文档或运行提示安装项目所需的库 步骤三:IDEA点击运行,等待程序服务启动完成 4、python资讯 如需要其他python项目的定制服务,可后台私信博主(注明你的项目需求) 4.1 python或人工智能项目辅导 4.2 python或人工智能程序定制 4.3 python科研合作 Django、Flask、Pytorch、Scrapy、PyQt、爬虫、可视化、大数据、推荐系统、人工智能、大模型
recommend-type

人脸识别例子,利用python调用opencv库

人脸识别例子
recommend-type

densenet模型-基于深度学习对手势方向识别-不含数据集图片-含逐行注释和说明文档.zip

densenet模型_基于深度学习对手势方向识别-不含数据集图片-含逐行注释和说明文档 本代码是基于python pytorch环境安装的。 下载本代码后,有个环境安装的requirement.txt文本 如果有环境安装不会的,可自行网上搜索如何安装python和pytorch,这些环境安装都是有很多教程的,简单的 环境需要自行安装,推荐安装anaconda然后再里面推荐安装python3.7或3.8的版本,pytorch推荐安装1.7.1或1.8.1版本 首先是代码的整体介绍 总共是3个py文件,十分的简便 且代码里面的每一行都是含有中文注释的,小白也能看懂代码 然后是关于数据集的介绍。 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 在数据集文件夹下是我们的各个类别,这个类别不是固定的,可自行创建文件夹增加分类数据集 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入了解MATLAB开根号的最新研究和应用:获取开根号领域的最新动态

![matlab开根号](https://www.mathworks.com/discovery/image-segmentation/_jcr_content/mainParsys3/discoverysubsection_1185333930/mainParsys3/image_copy.adapt.full.medium.jpg/1712813808277.jpg) # 1. MATLAB开根号的理论基础 开根号运算在数学和科学计算中无处不在。在MATLAB中,开根号可以通过多种函数实现,包括`sqrt()`和`nthroot()`。`sqrt()`函数用于计算正实数的平方根,而`nt
recommend-type

react的函数组件的使用

React 的函数组件是一种简单的组件类型,用于定义无状态或者只读组件。 它们通常接受一个 props 对象作为参数并返回一个 React 元素。 函数组件的优点是代码简洁、易于测试和重用,并且它们使 React 应用程序的性能更加出色。 您可以使用函数组件来呈现简单的 UI 组件,例如按钮、菜单、标签或其他部件。 您还可以将它们与 React 中的其他组件类型(如类组件或 Hooks)结合使用,以实现更复杂的 UI 交互和功能。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

解决MATLAB开根号常见问题:提供开根号运算的解决方案

![解决MATLAB开根号常见问题:提供开根号运算的解决方案](https://img-blog.csdnimg.cn/d939d1781acc404d8c826e8af207e68f.png) # 1. MATLAB开根号运算基础** MATLAB开根号运算用于计算一个数的平方根。其语法为: ``` y = sqrt(x) ``` 其中: * `x`:要开根号的数或数组 * `y`:开根号的结果 开根号运算的输入可以是实数、复数、矩阵或数组。对于实数,开根号运算返回一个非负实数。对于复数,开根号运算返回一个复数。对于矩阵或数组,开根号运算逐元素执行,对每个元素进行开根号运算。 #