keywords = ['b', 'c', 'a', 'e', 'g', 'd'] priority = { 'a': 2, 'g': 1 # 其他关键字地位相同 } sorted_keywords = sorted(keywords, key=lambda x: priority.get(x, 0), reverse=True) 这段代码的结果 怎么 a在g前面
时间: 2024-01-03 21:03:09 浏览: 17
这段代码的结果是将关键字按照其在字典 `priority` 中定义的优先级进行排序,优先级高的关键字排在前面。在给定的 `priority` 字典中,`a` 的优先级为2,而 `g` 的优先级为1,因此在排序结果中,`a` 会排在 `g` 的前面。需要注意的是,这里使用了 `reverse=True` 参数,表示按照降序排列,因此最终排序结果中,`a` 会在 `g` 的前面。
相关问题
import re import subprocess import time log_file = '/var/log/suricata/fast.log' ip_set = set() while True: with open(log_file) as file: file.seek(0, 2) # 将文件定位到文件末尾 for line in file: match = re.search(r'\d+\.\d+\.\d+\.\d+', line) if not match: continue ip = match.group() priority = re.search(r'Priority\.+', line).group() if ip in ip_set: continue if 'Priority: 1' in priority or 'Priority: 2' in priority: continue result = subprocess.call(['iptables', '-A', 'INPUT', '-s', ip, '-j', 'DROP']) if result == 0: print(f'封禁IP {ip} 成功!') ip_set.add(ip) else: print(f'封禁IP {ip} 失败!') time.sleep(5) 这段代码中我想用file.readlines()来读取文件,应该如何优化修改一下
可以将文件指针移到文件末尾,然后使用 file.readline() 来逐行读取新添加的内容,可以避免每次都读取整个文件。以下是修改后的代码:
```python
import re
import subprocess
import time
log_file = '/var/log/suricata/fast.log'
ip_set = set()
with open(log_file) as file:
file.seek(0, 2) # 将文件定位到文件末尾
while True:
line = file.readline()
if not line:
time.sleep(0.1) # 没有新内容就休眠一段时间
continue
match = re.search(r'\d+\.\d+\.\d+\.\d+', line)
if not match:
continue
ip = match.group()
priority = re.search(r'Priority\.+', line).group()
if ip in ip_set:
continue
if 'Priority: 1' in priority or 'Priority: 2' in priority:
continue
result = subprocess.call(['iptables', '-A', 'INPUT', '-s', ip, '-j', 'DROP'])
if result == 0:
print(f'封禁IP {ip} 成功!')
ip_set.add(ip)
else:
print(f'封禁IP {ip} 失败!')
```
修改代码使得,不超过时间限制def min_operations(a, b): count = 0 while a[0] >= b[0]: if a[1] < b[0]: a[0], a[1] = a[1], a[0] count += 1 else: b[0], b[1] = b[1], b[0] count += 1 if a[0] < b[0]: break return count t = int(input()) for _ in range(t): n = int(input()) a = list(map(int, input().split())) b = list(map(int, input().split())) print(min_operations(a, b))
One possible modification to improve the time complexity of this code is to use a priority queue (heap) to store the values of `a` and `b`. At each step, we can pop the smallest element from the priority queue and swap it with the next smallest element (if any) from the other priority queue. This approach should be faster than repeatedly swapping the first and second elements of the lists until the first element of `a` is less than the first element of `b`.
Here's the modified code:
```
import heapq
def min_operations(a, b):
count = 0
pq_a = [-x for x in a] # use negative values to simulate a max heap
pq_b = [-x for x in b]
heapq.heapify(pq_a)
heapq.heapify(pq_b)
while pq_a:
if -pq_a[0] < pq_b[0]:
break
if len(pq_a) > 1 and -pq_a[1] >= pq_b[0]:
heapq.heappop(pq_a)
heapq.heappush(pq_a, -heapq.heappop(pq_b))
else:
heapq.heappop(pq_a)
count += 1
return count
t = int(input())
for _ in range(t):
n = int(input())
a = list(map(int, input().split()))
b = list(map(int, input().split()))
print(min_operations(a, b))
```
This code uses the `heapq` module to create and manipulate the priority queues. We initialize the priority queues `pq_a` and `pq_b` using negative values of `a` and `b`, respectively, to simulate a max heap. We then use the `heapify` function to convert the lists into priority queues.
Inside the while loop, we first check if the smallest element of `a` is less than the smallest element of `b`. If so, we break out of the loop since we've achieved the desired condition. Otherwise, we check if the second smallest element of `a` is greater than or equal to the smallest element of `b`. If so, we swap the smallest element of `a` with the smallest element of `b` and push the swapped element into `pq_a`. If not, we simply pop the smallest element of `a`. In both cases, we increment the counter `count`.
This modified code should have a lower time complexity than the original code and should not exceed the time limit.
阅读全文