d2p函数matlab
时间: 2023-10-16 11:22:34 浏览: 104
d2p函数是一种在高维数据中计算点之间距离的函数,其中d2p函数使用欧几里得距离计算点之间的距离,然后将其转换为概率值,以便在流形学习算法中使用。以下是一个在MATLAB中实现d2p函数的示例代码:
```
function [P, beta] = d2p(X, tol, perplexity)
% X: 数据点矩阵
% tol: 迭代的容差
% perplexity: 困惑度
% 初始化
[n, ~] = size(X);
P = zeros(n, n);
beta = ones(n, 1);
logU = log(perplexity);
% 计算点之间的欧几里得距离
sum_X = sum(X .^ 2, 2);
D = bsxfun(@plus, sum_X, bsxfun(@plus, sum_X', -2 * (X * X')));
D = max(D, 0);
% 迭代计算概率分布
for i = 1:n
% 初始化参数
beta_min = -inf;
beta_max = inf;
Di = D(i, [1:i-1 i+1:end]);
% 使用二分搜索计算beta
[H, ~] = compute_entropy(Di, beta(i));
H_diff = H - logU;
tries = 0;
while abs(H_diff) > tol && tries < 50
if H_diff > 0
beta_min = beta(i);
if isinf(beta_max)
beta(i) = beta(i) * 2;
else
beta(i) = (beta(i) + beta_max) / 2;
end
else
beta_max = beta(i);
if isinf(beta_min)
beta(i) = beta(i) / 2;
else
beta(i) = (beta(i) + beta_min) / 2;
end
end
[H, ~] = compute_entropy(Di, beta(i));
H_diff = H - logU;
tries = tries + 1;
end
% 计算概率分布
P(i, [1:i-1 i+1:end]) = exp(-D(i, [1:i-1 i+1:end]) * beta(i));
P(i, i) = 0;
P(i, :) = P(i, :) / sum(P(i, :));
end
P = (P + P') / (2 * n);
% 防止概率分布为0
P(P < 1e-5) = 1e-5;
% 计算beta值的平均数
beta = mean(beta);
end
function [H, P] = compute_entropy(D, beta)
% 计算熵和概率分布
P = exp(-D * beta);
sum_P = sum(P);
H = log(sum_P) + beta * sum(D .* P) / sum_P;
end
```
此函数返回一个概率矩阵P,其中P(i,j)表示点i和点j之间的概率。它还返回一个平均beta值,该值可以用于其他流形学习算法中。
阅读全文