导入from sentence_transformers import SentenceTransformer时报错/cloudpickle/cloudpickle.py in _make_cell_set_template_code() return types.CodeType(co.co_argcount, co.co_kwonlyargcount, TypeError: an integer is required (got
时间: 2024-02-16 13:02:44 浏览: 408
这个错误通常是由于Python版本不兼容导致的。 SentenceTransformer 需要 Python 3.6 或更高版本。请确保你的 Python 版本符合要求。你可以尝试升级你的 Python 版本,或者使用一个兼容的版本的 SentenceTransformer。你可以通过以下命令安装一个指定版本的 SentenceTransformer:
```python
pip install sentence-transformers==0.3.9
```
这将安装版本号为 0.3.9 的 SentenceTransformer,它与 Python 3.6 兼容。
相关问题
python web_demo.py Explicitly passing a `revision` is encouraged when loading a model with custom code to ensure no malicious code has been contributed in a newer revision. Traceback (most recent call last): File "/home/nano/THUDM/ChatGLM-6B/web_demo.py", line 5, in <module> tokenizer = AutoTokenizer.from_pretrained("/home/nano/THUDM/chatglm-6b", trust_remote_code=True) File "/home/nano/.local/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py", line 679, in from_pretrained return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) File "/home/nano/.local/lib/python3.10/site-packages/transformers/tokenization_utils_base.py", line 1804, in from_pretrained return cls._from_pretrained( File "/home/nano/.local/lib/python3.10/site-packages/transformers/tokenization_utils_base.py", line 1958, in _from_pretrained tokenizer = cls(*init_inputs, **init_kwargs) File "/home/nano/.cache/huggingface/modules/transformers_modules/chatglm-6b/tokenization_chatglm.py", line 221, in __init__ self.sp_tokenizer = SPTokenizer(vocab_file, num_image_tokens=num_image_tokens) File "/home/nano/.cache/huggingface/modules/transformers_modules/chatglm-6b/tokenization_chatglm.py", line 64, in __init__ self.text_tokenizer = TextTokenizer(vocab_file) File "/home/nano/.cache/huggingface/modules/transformers_modules/chatglm-6b/tokenization_chatglm.py", line 22, in __init__ self.sp.Load(model_path) File "/home/nano/.local/lib/python3.10/site-packages/sentencepiece/__init__.py", line 905, in Load return self.LoadFromFile(model_file) File "/home/nano/.local/lib/python3.10/site-packages/sentencepiece/__init__.py", line 310, in LoadFromFile return _sentencepiece.SentencePieceProcessor_LoadFromFile(self, arg) RuntimeError: Internal: src/sentencepiece_processor.cc(1101) [model_proto->ParseFromArray(serialized.data(), serialized.size())]什么错误
根据您提供的错误信息,看起来是加载模型时出现了一些问题。具体来说,这个错误是由于加载了一个具有自定义代码的模型,并且在加载时没有明确指定修订版本。为了确保没有恶意代码被贡献到较新的修订版本中,建议显式地传递一个`revision`参数。
您可以尝试以下解决方法:
在`web_demo.py`文件中,将以下代码行:
```python
tokenizer = AutoTokenizer.from_pretrained("/home/nano/THUDM/chatglm-6b", trust_remote_code=True)
```
替换为:
```python
tokenizer = AutoTokenizer.from_pretrained("/home/nano/THUDM/chatglm-6b", trust_remote_code=True, revision="main")
```
这样会明确指定修订版本为"main",以避免加载模型时出现安全问题。请确保您已经下载了正确的模型文件并将路径指向正确的位置。
如果问题仍然存在,请提供更多详细信息,以便我能够更好地帮助您解决问题。
解释这段代码:import os.path as osp import pandas as pd import torch from sentence_transformers import SentenceTransformer from torch_geometric.data import HeteroData, download_url, extract_zip from torch_geometric.transforms import RandomLinkSplit, ToUndirected url = 'https://files.grouplens.org/datasets/movielens/ml-latest-small.zip' root = osp.join(osp.dirname(osp.realpath(__file__)), '../../data/MovieLens') extract_zip(download_url(url, root), root) movie_path = osp.join(root, 'ml-latest-small', 'movies.csv') rating_path = osp.join(root, 'ml-latest-small', 'ratings.csv') def load_node_csv(path, index_col, encoders=None, **kwargs): df = pd.read_csv(path, index_col=index_col, **kwargs) mapping = {index: i for i, index in enumerate(df.index.unique())} x = None if encoders is not None: xs = [encoder(df[col]) for col, encoder in encoders.items()] x = torch.cat(xs, dim=-1) return x, mapping def load_edge_csv(path, src_index_col, src_mapping, dst_index_col, dst_mapping, encoders=None, **kwargs): df = pd.read_csv(path, **kwargs) src = [src_mapping[index] for index in df[src_index_col]] dst = [dst_mapping[index] for index in df[dst_index_col]] edge_index = torch.tensor([src, dst]) edge_attr = None if encoders is not None: edge_attrs = [encoder(df[col]) for col, encoder in encoders.items()] edge_attr = torch.cat(edge_attrs, dim=-1) return edge_index, edge_attr class SequenceEncoder(object): # The 'SequenceEncoder' encodes raw column strings into embeddings. def __init__(self, model_name='all-MiniLM-L6-v2', device=None): self.device = device self.model = SentenceTransformer(model_name, device=device) @torch.no_grad() def __call__(self, df): x = self.model.encode(df.values, show_progress_bar=True, convert_to_tensor=True, device=self.device) return x.cpu() class GenresEncoder(object)
这段代码是一个Python脚本,主要用于加载MovieLens数据集中的电影和评分数据,并将其转换为图形数据,以便进行图形嵌入。其中,使用了以下库:
- os.path:用于处理文件路径的库。
- pandas:用于处理数据的库。
- torch:用于深度学习的库。
- sentence_transformers:用于生成句子嵌入的库。
- torch_geometric:用于处理图形数据的库。
首先,定义了一个URL和根目录,用于下载和存储MovieLens数据集。然后,定义了两个函数load_node_csv和load_edge_csv,用于加载节点和边的CSV文件,并将它们转换为PyTorch张量。最后,定义了一个名为SequenceEncoder的类,用于将序列数据转换为嵌入向量。
阅读全文