self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1, self.conv2, self.chomp2, self.relu2, self.dropout2) self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None self.relu = nn.ReLU() self.init_weights()每句话什么意思
时间: 2024-02-23 15:57:29 浏览: 126
PyTorch之nn.ReLU与F.ReLU的区别介绍
这是一个PyTorch的卷积神经网络模型的定义。具体解释如下:
1. self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1, self.conv2, self.chomp2, self.relu2, self.dropout2)
这一行代码定义了一个顺序容器,其中包含了两个卷积层、两个Chomp1d层、两个ReLU激活函数层和两个Dropout层。这些层按照顺序被堆叠在一起,构成了整个网络模型。
2. self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None
这一行代码定义了一个1x1卷积层(也称为逐点卷积层),用于在残差连接中进行下采样。如果输入和输出的通道数相同,则不需要下采样,此时downsample为None。
3. self.relu = nn.ReLU()
这一行代码定义了一个ReLU激活函数层,用于将残差连接的输出进行非线性变换。
4. self.init_weights()
这一行代码调用了一个函数,用于初始化模型的权重。该函数的具体实现可以在后续代码中找到。
阅读全文