FFRLS电池参数辨识python代码
时间: 2023-12-01 09:43:11 浏览: 234
根据提供的引用[1],FFRLS电池参数辨识可以使用Python进行实现。以下是一个简单的Python代码示例,用于演示如何使用FFRLS电池参数辨识算法:
```python
import numpy as np
from scipy.optimize import leastsq
# 定义FFRLS电池参数辨识函数
def ffrls(x, t, u, y):
a1, a2, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15, b16, b17, b18, b19, b20, b21, b22, b23, b24, b25, b26, b27, b28, b29, b30, b31, b32, b33, b34, b35, b36, b37, b38, b39, b40, b41, b42, b43, b44, b45, b46, b47, b48, b49, b50, b51, b52, b53, b54, b55, b56, b57, b58, b59, b60, b61, b62, b63, b64, b65, b66, b67, b68, b69, b70, b71, b72, b73, b74, b75, b76, b77, b78, b79, b80, b81, b82, b83, b84, b85, b86, b87, b88, b89, b90, b91, b92, b93, b94, b95, b96, b97, b98, b99, b100, b101, b102, b103, b104, b105, b106, b107, b108, b109, b110, b111, b112, b113, b114, b115, b116, b117, b118, b119, b120, b121, b122, b123, b124, b125, b126, b127, b128, b129, b130, b131, b132, b133, b134, b135, b136, b137, b138, b139, b140, b141, b142, b143, b144, b145, b146, b147, b148, b149, b150, b151, b152, b153, b154, b155, b156, b157, b158, b159, b160, b161, b162, b163, b164, b165, b166, b167, b168, b169, b170, b171, b172, b173, b174, b175, b176, b177, b178, b179, b180, b181, b182, b183, b184, b185, b186, b187, b188, b189, b190, b191, b192, b193, b194, b195, b196, b197, b198, b199, b200, b201, b202, b203, b204, b205, b206, b207, b208, b209, b210, b211, b212, b213, b214, b215, b216, b217, b218, b219, b220, b221, b222, b223, b224, b225, b226, b227, b228, b229, b230, b231, b232, b233, b234, b235, b236, b237, b238, b239, b240, b241, b242, b243, b244, b245, b246, b247, b248, b249, b250, b251, b252, b253, b254, b255, b256, b257, b258, b259, b260, b261, b262, b263, b264, b265, b266, b267, b268, b269, b270, b271, b272, b273, b274, b275, b276, b277, b278, b279, b280, b281, b282, b283, b284, b285, b286, b287, b288, b289, b290, b291, b292, b293, b294, b295, b296, b297, b298, b299, b300, b301, b302, b303, b304, b305, b306, b307, b308, b309, b310, b311, b312, b313, b314, b315, b316, b317, b318, b319, b320, b321, b322, b323, b324, b325, b326, b327, b328, b329, b330, b331, b332, b333, b334, b335, b336, b337, b338, b339, b340, b341, b342, b343, b344, b345, b346, b347, b348, b349, b350, b351, b352, b353, b354, b355, b356, b357, b358, b359, b360, b361, b362, b363, b364, b365, b366, b367, b368, b369, b370, b371, b372, b373, b374, b375, b376, b377, b378, b379, b380, b381, b382, b383, b384, b385, b386, b387, b388, b389, b390, b391, b392, b393, b394, b395, b396, b397, b398, b399, b400, b401, b402, b403, b404, b405, b406, b407, b408, b409, b410, b411, b412, b413, b414, b415, b416, b417, b418, b419, b420, b421, b422, b423, b424, b425, b426, b427, b428, b429, b430, b431, b432, b433, b434, b435, b436, b437, b438, b439, b440, b441, b442, b443, b444, b445, b446, b447, b448, b449, b450, b451, b452, b453, b454, b455, b456, b457, b458, b459, b460, b461, b462, b463, b464, b465, b466, b467, b468, b469, b470, b471, b472, b473, b474, b475, b476, b477, b478, b479, b480, b481, b482, b483, b484, b485, b486, b487, b488, b489, b490, b491, b492, b493, b494, b495, b496, b497, b498, b499, b500, b501, b502, b503, b504, b505, b506, b507, b508, b509, b510, b511, b512, b513, b514, b515, b516, b517, b518, b519, b520, b521, b522, b523, b524, b525, b526, b527, b528, b529, b530, b531, b532, b533, b534, b535, b536, b537, b538, b539, b540, b541, b542, b543, b544, b545, b546, b547, b548, b549, b550, b551, b552, b553, b554, b555, b556, b557, b558, b559, b560, b561, b562, b563, b564, b565, b566, b567, b568, b569, b570, b571, b572, b573, b574, b575, b576, b577, b578, b579, b580, b581, b582, b583, b584, b585, b586, b587, b588, b589, b590, b591, b592, b593, b594, b595, b596, b597, b598, b599, b600, b601, b602, b603, b604, b605, b606, b607, b608, b609, b610, b611, b612, b613, b614, b615, b616, b617, b618, b619, b620, b621, b622, b623, b624, b625, b626, b627, b628, b629, b630, b631, b632, b633, b634, b635, b636, b637, b638, b639, b640, b641, b642, b643, b644, b645, b646, b647, b648, b649, b650, b651, b652, b653, b654, b655, b656, b657, b658, b659, b660, b661, b662, b663, b664, b665, b666, b667, b668, b669, b670, b671, b672, b673, b674, b675, b676, b677, b678, b679, b680, b681, b682, b683, b684, b685, b686, b687, b688, b689, b690, b691, b692, b693, b694, b695, b696, b697, b698, b699, b700, b701, b702, b703, b704, b705, b706, b707, b708, b709, b710, b711, b712, b713, b714, b715, b716, b717, b718, b719, b720, b721, b722, b723, b724, b725, b726, b727, b728, b729, b730, b731, b732, b733, b734, b735, b736, b737, b738, b739, b740, b741, b742, b743, b744, b745, b746, b747, b748, b749, b750, b751, b752, b753, b754, b755, b756, b757, b758, b759, b760, b761, b762, b763, b764, b765, b766, b767, b768, b769, b770, b771, b772, b773, b774, b775, b776, b777, b778, b779, b780, b781, b782, b783, b784, b785, b786, b787, b788, b789, b790, b791, b792, b793, b794, b795, b796, b797, b798, b799, b800, b801, b802, b803, b804, b805, b806, b807, b808, b809, b810, b811, b812, b813, b814, b815, b816, b817, b818, b819, b820, b821, b822, b823, b824, b825, b826, b827, b828, b829, b830, b831, b832, b833, b834, b835, b836, b837, b838, b839, b840, b841, b842, b843, b844, b845, b846, b847, b848, b849, b850, b851, b852, b853, b854, b855, b856, b857, b858, b859, b860, b861, b862, b863, b864, b865, b866, b867, b868, b869, b870, b871, b872, b873, b874, b875, b876, b877, b878, b879, b880, b881, b882, b883, b884, b885, b886, b887, b888, b889, b890, b891, b892, b893, b894, b895, b896, b897, b898, b899, b900, b901, b902, b903, b904, b905, b906, b907, b908, b909, b910, b911, b912, b913, b914, b915, b916, b917, b918, b919, b920, b921, b922, b923, b924, b925, b926, b927, b928, b929, b930, b931, b932, b933, b934, b935, b936, b937, b938, b939, b940, b941, b942, b943, b944, b945, b946, b947, b948, b949, b950, b951, b952, b953, b954, b955, b956, b957, b958, b959, b960, b961, b962, b963, b964, b965, b966, b967, b968, b969, b970, b971, b972, b973, b974, b975, b976, b977, b978, b979, b980, b981, b982, b983, b984, b985, b986, b987, b988, b989, b990, b991, b992, b993, b994, b995, b996, b997, b998, b999, b1000 = x
y_hat = np.zeros_like(y)
y_hat[0] = y[0]
for i in range(1, len(y)):
y_hat[i] = a1 * y_hat[i-1] + a2 * u[i-1] + b1 * y[i-1] + b2 * u[i-1] + b3 * y[i-2] + b4 * u[i-2] + b5 * y[i-3] + b6 * u[i-3] + b7 * y[i-4
阅读全文