pytorch qat量化
时间: 2023-11-04 12:53:52 浏览: 158
PyTorch QAT(Quantization Aware Training)是一种量化训练方法,可以将浮点模型转换为定点模型,从而提高模型的推理速度和减少存储空间。下面是一个简单的PyTorch QAT示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.quantization as quantization
# 定义一个简单的模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 256)
self.fc2 = nn.Linear(256, 128)
self.fc3 = nn.Linear(128, 10)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = x.view(-1, 784)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
# 加载MNIST数据集
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('/mnist/', train=True, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=128, shuffle=True)
# 定义训练函数
def train(model, criterion, optimizer, train_loader, num_epochs):
for epoch in range(num_epochs):
model.train()
for i, (inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs = model(inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 定义评估函数
def evaluate(model, data_loader):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in data_loader:
inputs, targets = inputs.cuda(), targets.cuda()
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
return 100.0 * correct / total
# 定义量化模型函数
def quantize(model):
model.qconfig = quantization.get_default_qat_qconfig('fbgemm')
quantization.prepare_qat(model, inplace=True)
return model
# 定义反量化模型函数
def dequantize(model):
quantization.convert(model, inplace=True)
return model
# 实例化模型、损失函数和优化器
model = Net().cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# 训练模型
train(model, criterion, optimizer, train_loader, 5)
# 评估模型
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('/mnist/', train=False, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=128, shuffle=True)
accuracy = evaluate(model, test_loader)
print('Accuracy before quantization: %.2f%%' % accuracy)
# 量化模型
quantized_model = quantize(model)
# 评估量化模型
accuracy = evaluate(quantized_model, test_loader)
print('Accuracy after quantization: %.2f%%' % accuracy)
# 反量化模型
dequantized_model = dequantize(quantized_model)
# 评估反量化模型
accuracy = evaluate(dequantized_model, test_loader)
print('Accuracy after dequantization: %.2f%%' % accuracy)
```
以上代码中的 `Net` 类定义了一个简单的神经网络模型。`train` 函数用于训练模型,`evaluate` 函数用于评估模型的准确性。`quantize` 函数用于将模型量化为定点模型,`dequantize` 函数用于反量化模型。在主程序中,首先使用浮点模型训练模型,然后量化模型,评估量化模型的准确性,反量化模型,再次评估反量化模型的准确性。
阅读全文