model_dict = model.state_dict() state_dict = {} state_dict = {k:v for k,v in save_model_dict.items() if k in model_dict.keys()}
时间: 2024-05-23 19:15:54 浏览: 137
这段代码的作用是将一个保存模型的字典(save_model_dict)中的键值对根据键在模型的状态字典(model_dict)中的存在进行筛选和匹配,并将匹配成功的键值对保存在新的字典中(state_dict)。具体来说,将save_model_dict中所有在model_dict中存在的键值对提取出来,并保存在state_dict中。
相关问题
model_dict = model.state_dict() pretrained_dict = torch.load(model_path, map_location=device) load_key, no_load_key, temp_dict = [], [], {} for k, v in pretrained_dict.items(): if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v): temp_dict[k] = v load_key.append(k) else: no_load_key.append(k) model_dict.update(temp_dict) model.load_state_dict(model_dict)
这段代码主要用于从预训练模型中加载部分权重到当前模型中,并返回加载情况。
首先,将当前模型的状态字典保存到 model_dict 变量中。然后,调用 torch.load 函数加载预训练模型的权重文件,并将结果保存到 pretrained_dict 变量中。接着,根据需要和不需要加载的权重的键,创建 load_key、no_load_key 和 temp_dict 变量。然后,对于 pretrained_dict 中的每个键值对,判断该键是否需要加载,如果需要加载,则将该键值对保存到 temp_dict 中,并将该键保存到 load_key 列表中;如果不需要加载,则将该键保存到 no_load_key 列表中。最后,将 temp_dict 中保存的权重更新到 model_dict 中,并调用 model 的 load_state_dict 方法将 model_dict 中的权重加载到当前模型中。
返回值包括三个列表:load_key 列表保存了需要加载的权重的键,no_load_key 列表保存了不需要加载的权重的键,temp_dict 字典保存了需要加载的权重的键值对。
def xceptionRGBD(arch,pretrained=False, **kwargs): model = XceptionRGBD(**kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['xception'])) model_dict = model.state_dict() model_keys = model_dict.keys() state_keys = model.state_dict.keys() for key in model_keys: if key in state_keys: if key == 'conv1.weight': continue model_dict[key] = model.state_dict[key] model.load_state_dict(model_dict, strict=True) return model
这段代码定义了一个名为 xceptionRGBD 的函数,函数的作用是返回一个 XceptionRGBD 模型。如果 pretrained 参数为 True,那么该模型会加载预训练权重。在加载预训练权重时,代码首先会使用 model_zoo.load_url() 函数从网络上下载预训练权重,并将其加载到模型中。然后,代码会遍历模型的 state_dict,并将其与预训练权重进行匹配。在这个过程中,代码会跳过 conv1.weight 权重,因为该权重的维度与预训练权重不匹配。最后,将匹配后的 state_dict 加载到模型中,并返回该模型。
阅读全文