STM32F407使用标准库,串口USART2通过DMA进行数据接收使用乒乓缓冲的实例

时间: 2023-06-26 20:06:28 浏览: 64
好的,以下是使用标准库,串口USART2通过DMA进行数据接收使用乒乓缓冲的实例代码: ```c #include "stm32f4xx.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #define RX_BUFFER_SIZE 512 volatile uint8_t rx_buffer[2][RX_BUFFER_SIZE]; volatile uint32_t rx_write_index = 0; volatile uint32_t rx_read_index = 0; volatile uint32_t rx_count = 0; volatile uint8_t rx_active_buffer = 0; void init_usart(void); void init_dma(void); void DMA1_Stream5_IRQHandler(void); int main(void) { init_usart(); init_dma(); while (1) { if (rx_count > 0) { uint32_t i; for (i = 0; i < rx_count; i++) { printf("%c", rx_buffer[rx_read_index][i]); } rx_count = 0; rx_read_index = (rx_read_index + 1) % 2; } } } void init_usart(void) { GPIO_InitTypeDef gpio_init; USART_InitTypeDef usart_init; // Enable GPIO clock RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); // Enable USART clock RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); // Configure USART pins gpio_init.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3; gpio_init.GPIO_Mode = GPIO_Mode_AF; gpio_init.GPIO_Speed = GPIO_Speed_50MHz; gpio_init.GPIO_OType = GPIO_OType_PP; gpio_init.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(GPIOA, &gpio_init); // Connect USART pins to AF GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2); GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_USART2); // Configure USART usart_init.USART_BaudRate = 115200; usart_init.USART_WordLength = USART_WordLength_8b; usart_init.USART_StopBits = USART_StopBits_1; usart_init.USART_Parity = USART_Parity_No; usart_init.USART_HardwareFlowControl = USART_HardwareFlowControl_None; usart_init.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(USART2, &usart_init); // Enable USART USART_Cmd(USART2, ENABLE); } void init_dma(void) { DMA_InitTypeDef dma_init; NVIC_InitTypeDef nvic_init; // Enable DMA clock RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE); // Configure DMA channel DMA_DeInit(DMA1_Stream5); dma_init.DMA_Channel = DMA_Channel_4; dma_init.DMA_PeripheralBaseAddr = (uint32_t)&USART2->DR; dma_init.DMA_Memory0BaseAddr = (uint32_t)&rx_buffer[0]; dma_init.DMA_DIR = DMA_DIR_PeripheralToMemory; dma_init.DMA_BufferSize = RX_BUFFER_SIZE; dma_init.DMA_PeripheralInc = DMA_PeripheralInc_Disable; dma_init.DMA_MemoryInc = DMA_MemoryInc_Enable; dma_init.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; dma_init.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; dma_init.DMA_Mode = DMA_Mode_Circular; dma_init.DMA_Priority = DMA_Priority_VeryHigh; dma_init.DMA_FIFOMode = DMA_FIFOMode_Disable; dma_init.DMA_FIFOThreshold = DMA_FIFOThreshold_1QuarterFull; dma_init.DMA_MemoryBurst = DMA_MemoryBurst_Single; dma_init.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; DMA_Init(DMA1_Stream5, &dma_init); // Enable DMA interrupts DMA_ITConfig(DMA1_Stream5, DMA_IT_TC, ENABLE); nvic_init.NVIC_IRQChannel = DMA1_Stream5_IRQn; nvic_init.NVIC_IRQChannelPreemptionPriority = 0; nvic_init.NVIC_IRQChannelSubPriority = 0; nvic_init.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&nvic_init); // Start DMA transfer DMA_Cmd(DMA1_Stream5, ENABLE); } void DMA1_Stream5_IRQHandler(void) { if (DMA_GetITStatus(DMA1_Stream5, DMA_IT_TCIF5)) { DMA_ClearITPendingBit(DMA1_Stream5, DMA_IT_TCIF5); // Swap active buffer rx_active_buffer = (rx_active_buffer + 1) % 2; // Set DMA memory buffer address DMA1_Stream5->M0AR = (uint32_t)&rx_buffer[rx_active_buffer]; // Update write index and count uint32_t new_count = DMA_GetCurrDataCounter(DMA1_Stream5); rx_count += RX_BUFFER_SIZE - new_count; rx_write_index = rx_active_buffer; } } ``` 以上代码中使用了两个缓冲区,即“乒乓缓冲”。DMA接收数据到一个缓冲区时,另一个缓冲区可以被处理。在中断处理程序中,交换缓冲区并更新读写索引和计数器。在主循环中,如果有数据可用,则打印出来。 希望对你有所帮助!

相关推荐

最新推荐

recommend-type

STM32串口USART2程序

PA2,PA2端口复用为串口2的TX,RX。在配置某个口线时,首先应对它所在的端口的时钟进行使能。否则无法配置成功,由于用到了端口B, 因此要对这个端口的时钟。进行使能,同时由于用到复用IO口功能用于配置串口。因此...
recommend-type

通过学习USART1深入STM32F107VCT6的串口通信

STM32有数个串口,每个串口都有一个自己独立的波特率寄存器USART_BRR,通过设置该寄存器就可以达到配置不同波特率的目的,由于STM32采用分数波特率,所以STM32的串口波特率设置范围很宽,而且误差很小。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望