用numpy写一个匈牙利算法
时间: 2023-11-14 22:05:01 浏览: 138
好的,下面是用NumPy实现的匈牙利算法:
```python
import numpy as np
def hungarian_algorithm(cost_matrix):
# 初始化
num_rows, num_cols = cost_matrix.shape
labels = np.zeros((num_rows, num_cols))
matching = np.full(num_cols, -1, dtype=int)
slack = np.full(num_cols, np.inf)
# 辅助函数
def augment(col):
visited = np.zeros(num_rows, dtype=bool)
def dfs(row):
visited[row] = True
for j in range(num_cols):
if not visited[j]:
reduced_cost = cost_matrix[row, j] - labels[row, col] - labels[j, j]
if slack[j] >= reduced_cost:
slack[j] = reduced_cost
if matching[j] == -1 or dfs(matching[j]):
matching[j] = col
return True
return False
return dfs
# 主循环
for i in range(num_rows):
labels[i, :] = np.min(cost_matrix[i, :]) - cost_matrix[i, :]
labels[:, i] = np.min(cost_matrix[:, i] - labels[:, i])
while True:
slack.fill(np.inf)
visited = np.zeros(num_cols, dtype=bool)
if augment(i)(i):
break
else:
delta = np.min(slack[~visited])
labels[visited, i] += delta
labels[~visited, i] -= delta
slack -= delta
return matching
```
这个算法接收一个二维的NumPy数组 `cost_matrix` 作为输入,输出一个包含每列所匹配的行的索引的NumPy数组。与前面的Python实现类似,如果输出为 `[1, 0, 2]`,则第1列匹配了第1行,第2列匹配了第0行,第3列匹配了第2行。
阅读全文