train_Datasets = TensorDataset(train_features.to(device), train_labels.to(device)) train_Loader = DataLoader(batch_size=batch_size, dataset=train_Datasets) val_Datasets = TensorDataset(val_features.to(device), val_labels.to(device)) val_Loader = DataLoader(batch_size=batch_size, dataset=val_Datasets)
时间: 2023-06-13 18:02:09 浏览: 159
数据集_Datasets.zip
这段代码是用来创建 PyTorch 中的数据集和数据加载器的。首先,我们将训练数据和标签转换为 Tensor,并将它们移到 GPU 上(如果存在)。然后,我们使用 `TensorDataset` 将数据和标签打包成一个数据集。接着,我们使用 `DataLoader` 创建一个数据加载器,它会将数据集分割成多个小批量,每个小批量包含 `batch_size` 个样本和对应的标签。这个数据加载器可以用于训练模型和评估模型在验证集上的性能。
阅读全文