生成代码完成蒙特卡洛树判断五子棋胜负,通过c语言来写
时间: 2023-06-18 22:04:06 浏览: 112
C写的五子棋程序能判胜负
以下是一个基于 C 语言的简单实现,使用了蒙特卡洛树搜索算法来判断五子棋胜负:
```c
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define BOARD_SIZE 15 // 棋盘大小
#define WIN_COUNT 5 // 获胜所需棋子数
typedef struct {
int x;
int y;
} Position; // 棋子位置
typedef struct Node Node;
struct Node {
int visit_count;
double win_count;
Position move;
Node *parent;
Node **children;
int children_count;
int untried_moves_count;
Position *untried_moves;
};
typedef struct {
int board[BOARD_SIZE][BOARD_SIZE];
int current_player;
} GameState; // 游戏状态
// 初始化游戏状态
void init_game_state(GameState *state) {
int i, j;
for (i = 0; i < BOARD_SIZE; i++) {
for (j = 0; j < BOARD_SIZE; j++) {
state->board[i][j] = 0;
}
}
state->current_player = 1;
}
// 判断赢家
int winner(GameState *state) {
int i, j, k;
int count;
int player;
// 水平方向
for (i = 0; i < BOARD_SIZE; i++) {
for (j = 0; j <= BOARD_SIZE - WIN_COUNT; j++) {
player = state->board[i][j];
if (player != 0) {
count = 1;
for (k = 1; k < WIN_COUNT; k++) {
if (state->board[i][j + k] == player) {
count++;
} else {
break;
}
}
if (count == WIN_COUNT) {
return player;
}
}
}
}
// 垂直方向
for (i = 0; i <= BOARD_SIZE - WIN_COUNT; i++) {
for (j = 0; j < BOARD_SIZE; j++) {
player = state->board[i][j];
if (player != 0) {
count = 1;
for (k = 1; k < WIN_COUNT; k++) {
if (state->board[i + k][j] == player) {
count++;
} else {
break;
}
}
if (count == WIN_COUNT) {
return player;
}
}
}
}
// 主对角线方向
for (i = 0; i <= BOARD_SIZE - WIN_COUNT; i++) {
for (j = 0; j <= BOARD_SIZE - WIN_COUNT; j++) {
player = state->board[i][j];
if (player != 0) {
count = 1;
for (k = 1; k < WIN_COUNT; k++) {
if (state->board[i + k][j + k] == player) {
count++;
} else {
break;
}
}
if (count == WIN_COUNT) {
return player;
}
}
}
}
// 副对角线方向
for (i = 0; i <= BOARD_SIZE - WIN_COUNT; i++) {
for (j = WIN_COUNT - 1; j < BOARD_SIZE; j++) {
player = state->board[i][j];
if (player != 0) {
count = 1;
for (k = 1; k < WIN_COUNT; k++) {
if (state->board[i + k][j - k] == player) {
count++;
} else {
break;
}
}
if (count == WIN_COUNT) {
return player;
}
}
}
}
return 0;
}
// 创建新的节点
Node *new_node(Position move, Node *parent) {
Node *node = (Node *) malloc(sizeof(Node));
node->visit_count = 0;
node->win_count = 0.0;
node->move = move;
node->parent = parent;
node->children = NULL;
node->children_count = 0;
node->untried_moves_count = BOARD_SIZE * BOARD_SIZE;
node->untried_moves = (Position *) malloc(sizeof(Position) * node->untried_moves_count);
int i, j;
for (i = 0; i < BOARD_SIZE; i++) {
for (j = 0; j < BOARD_SIZE; j++) {
node->untried_moves[i * BOARD_SIZE + j].x = i;
node->untried_moves[i * BOARD_SIZE + j].y = j;
}
}
return node;
}
// 释放节点
void free_node(Node *node) {
int i;
for (i = 0; i < node->children_count; i++) {
free_node(node->children[i]);
}
free(node->children);
free(node->untried_moves);
free(node);
}
// 选择节点
Node *select_node(Node *node) {
while (node->untried_moves_count == 0 && node->children_count > 0) {
double max_ucb1 = -1.0;
int selected_index = -1;
int i;
for (i = 0; i < node->children_count; i++) {
Node *child = node->children[i];
double ucb1 = child->win_count / child->visit_count + sqrt(2.0 * log(node->visit_count) / child->visit_count);
if (ucb1 > max_ucb1) {
max_ucb1 = ucb1;
selected_index = i;
}
}
node = node->children[selected_index];
}
return node;
}
// 扩展节点
Node *expand_node(Node *node) {
int selected_index = rand() % node->untried_moves_count;
Position selected_move = node->untried_moves[selected_index];
node->untried_moves[selected_index] = node->untried_moves[node->untried_moves_count - 1];
node->untried_moves_count--;
Node *child_node = new_node(selected_move, node);
if (node->children == NULL) {
node->children = (Node **) malloc(sizeof(Node *));
} else {
node->children = (Node **) realloc(node->children, sizeof(Node *) * (node->children_count + 1));
}
node->children[node->children_count] = child_node;
node->children_count++;
return child_node;
}
// 模拟游戏
int simulate_game(GameState *state) {
GameState copy_state;
int result;
while (1) {
copy_state = *state;
while (1) {
int x = rand() % BOARD_SIZE;
int y = rand() % BOARD_SIZE;
if (copy_state.board[x][y] == 0) {
copy_state.board[x][y] = copy_state.current_player;
copy_state.current_player = 3 - copy_state.current_player;
break;
}
}
result = winner(©_state);
if (result != 0) {
break;
}
}
return result;
}
// 回溯更新节点
void back_propagate(Node *node, int result) {
while (node != NULL) {
node->visit_count++;
if (node->move.x >= 0 && node->move.y >= 0) {
if (result == node->parent->move.player) {
node->win_count += 1.0;
}
}
node = node->parent;
}
}
// 蒙特卡洛树搜索算法
Position monte_carlo_tree_search(GameState *state, int iterations) {
Node *root_node = new_node((Position) {-1, -1, state->current_player}, NULL);
int i;
for (i = 0; i < iterations; i++) {
Node *node = select_node(root_node);
Node *child_node = expand_node(node);
int result = simulate_game(state);
back_propagate(child_node, result);
}
double max_win_count = -1.0;
int selected_index = -1;
for (i = 0; i < root_node->children_count; i++) {
Node *child = root_node->children[i];
if (child->win_count > max_win_count) {
max_win_count = child->win_count;
selected_index = i;
}
}
Position selected_move = root_node->children[selected_index]->move;
free_node(root_node);
return selected_move;
}
// 打印棋盘
void print_board(GameState *state) {
int i, j;
for (i = 0; i < BOARD_SIZE; i++) {
for (j = 0; j < BOARD_SIZE; j++) {
if (state->board[i][j] == 1) {
printf("O");
} else if (state->board[i][j] == 2) {
printf("X");
} else {
printf(".");
}
}
printf("\n");
}
}
int main() {
srand((unsigned int) time(NULL));
GameState state;
init_game_state(&state);
while (1) {
print_board(&state);
int result = winner(&state);
if (result != 0) {
printf("Player %d wins!\n", result);
break;
}
if (state.current_player == 1) {
printf("Player O's turn.\n");
int x, y;
scanf("%d%d", &x, &y);
if (state.board[x][y] == 0) {
state.board[x][y] = 1;
state.current_player = 2;
} else {
printf("Invalid move.\n");
}
} else {
printf("Player X's turn.\n");
Position move = monte_carlo_tree_search(&state, 100000);
printf("Move: %d %d\n", move.x, move.y);
state.board[move.x][move.y] = 2;
state.current_player = 1;
}
}
return 0;
}
```
这是一个基于蒙特卡洛树搜索算法的简单实现,使用随机模拟游戏来评估节点。在实际应用中,可能需要更复杂的评估函数来模拟游戏,并且需要调整参数来提高搜索效率和准确性。
阅读全文