Dijkstra机器人移动规划Matlab代码
时间: 2023-07-09 19:51:11 浏览: 97
下面是Dijkstra算法的网格移动机器人路径规划的Matlab实现代码:
```
function path = dijkstra(start, goal, costmap% start: 起点坐 [x, y]
% goal: 终点坐标 [x, y]
% costmap: 代价地图,二维矩阵,表示每个网格的代价
% 确定起点和终点在代价地图中的索引
start_idx = sub2ind(size(costmap), start(2), start(1));
goal_idx = sub2ind(size(costmap), goal(2), goal(1));
% 初始化距离和路径
distances = Inf(size(costmap));
distances(start_idx) = 0;
prev = nan(size(costmap));
% 初始化堆
heap = [start_idx, 0];
while ~isempty(heap)
% 取出堆中距离最小的节点
[current, cost] = heap_pop(heap);
% 判断是否到达终点
if current == goal_idx
break;
end
% 遍历当前节点的邻居节点
neighbors = get_neighbors(current, size(costmap));
for i = 1:size(neighbors, 1)
neighbor = neighbors(i);
% 计算到达邻居节点的代价
new_cost = cost + costmap(neighbor);
% 判断是否已经遍历过该节点,或者代价更大
if new_cost < distances(neighbor)
% 更新距离和路径
distances(neighbor) = new_cost;
prev(neighbor) = current;
% 将邻居节点加入堆中
heap_push(heap, neighbor, new_cost);
end
end
end
% 生成路径
path = [];
if ~isnan(prev(goal_idx))
node = goal_idx;
while ~isnan(node)
path = [path; node];
node = prev(node);
end
path = flip(path, 1);
end
end
function heap_push(heap, node, cost)
heap(end+1, :) = [node, cost];
idx = size(heap, 1);
while idx > 1 && heap(idx, 2) < heap(floor(idx/2), 2)
heap([idx, floor(idx/2)], :) = heap([floor(idx/2), idx], :);
idx = floor(idx/2);
end
end
function [node, cost] = heap_pop(heap)
node = heap(1, 1);
cost = heap(1, 2);
heap(1, :) = heap(end, :);
heap(end, :) = [];
idx = 1;
while idx*2 <= size(heap, 1)
child = idx*2;
if child+1 <= size(heap, 1) && heap(child+1, 2) < heap(child, 2)
child = child + 1;
end
if heap(child, 2) < heap(idx, 2)
heap([idx, child], :) = heap([child, idx], :);
idx = child;
else
break;
end
end
end
function neighbors = get_neighbors(idx, map_size)
[x, y] = ind2sub(map_size, idx);
neighbors = [x-1, y; x+1, y; x, y-1; x, y+1];
mask = neighbors(:, 1) >= 1 & neighbors(:, 1) <= map_size(1) & ...
neighbors(:, 2) >= 1 & neighbors(:, 2) <= map_size(2);
neighbors = sub2ind(map_size, neighbors(mask, 1), neighbors(mask, 2));
end
```
其中,`start`和`goal`分别表示起点和终点的坐标,`costmap`是一个二维矩阵,表示每个网格的代价。在实际应用中,需要根据具体情况修改`costmap`的值。
`dijkstra`函数返回从起点到终点的最短路径,路径为一个二维数组,每一行表示一个节点的索引。`heap_push`和`heap_pop`函数分别实现堆的插入和弹出操作,`get_neighbors`函数返回一个节点的邻居节点。
阅读全文