使用ALNS算法求解TSP问题的MATLAB的代码
时间: 2024-02-23 08:02:41 浏览: 81
以下是一个使用ALNS算法求解TSP问题的MATLAB代码示例:
```
% TSP问题的ALNS算法求解
% 定义TSP问题的距离矩阵
distMatrix = [
0 29 82 46 68 52 72 42 51 55 29 74;
29 0 55 46 42 43 43 23 23 31 41 51;
82 55 0 68 46 55 23 43 41 29 79 42;
46 46 68 0 82 15 72 31 62 42 21 51;
68 42 46 82 0 74 23 52 21 46 82 58;
52 43 55 15 74 0 61 23 55 31 33 37;
72 43 23 72 23 61 0 42 23 31 77 37;
42 23 43 31 52 23 42 0 33 15 37 33;
51 23 41 62 21 55 23 33 0 29 62 46;
55 31 29 42 46 31 31 15 29 0 51 21;
29 41 79 21 82 33 77 37 62 51 0 65;
74 51 42 51 58 37 37 33 46 21 65 0;
];
% 定义算法参数
maxIterations = 100;
maxNoImprove = 10;
destroyProb = 0.5;
repairProb = 0.5;
% 初始化解
currentSolution = [1:12];
bestSolution = currentSolution;
bestCost = inf;
% 迭代搜索
noImprovementCounter = 0;
for i = 1:maxIterations
% 摧毁当前解
candidateSolution = destroy(currentSolution, destroyProb);
% 修复破坏的部分
candidateSolution = repair(candidateSolution, repairProb, distMatrix);
% 计算解的成本
candidateCost = costFunction(candidateSolution, distMatrix);
% 判断是否接受新解
if candidateCost < bestCost
bestSolution = candidateSolution;
bestCost = candidateCost;
noImprovementCounter = 0;
else
noImprovementCounter = noImprovementCounter + 1;
end
% 判断是否达到停止条件
if noImprovementCounter >= maxNoImprove
break;
end
% 更新当前解
currentSolution = bestSolution;
end
% 输出最优解和成本
disp(bestSolution);
disp(bestCost);
% 定义摧毁函数
function candidateSolution = destroy(currentSolution, destroyProb)
n = length(currentSolution);
candidateSolution = currentSolution;
for i = 1:n
if rand() < destroyProb
j = randi([1,n]);
candidateSolution([i,j]) = candidateSolution([j,i]);
end
end
end
% 定义修复函数
function candidateSolution = repair(currentSolution, repairProb, distMatrix)
n = length(currentSolution);
candidateSolution = currentSolution;
for i = 1:n
if rand() < repairProb
candidateSolution(i) = findBestInsertion(i, candidateSolution, distMatrix);
end
end
end
% 定义成本函数
function cost = costFunction(solution, distMatrix)
n = length(solution);
cost = 0;
for i = 1:n-1
cost = cost + distMatrix(solution(i), solution(i+1));
end
cost = cost + distMatrix(solution(n), solution(1));
end
% 定义最佳插入函数
function bestInsertion = findBestInsertion(city, solution, distMatrix)
n = length(solution);
bestCost = inf;
bestInsertion = solution(1);
for i = 1:n-1
cost = distMatrix(solution(i), city) + distMatrix(city, solution(i+1)) - distMatrix(solution(i), solution(i+1));
if cost < bestCost
bestCost = cost;
bestInsertion = i+1;
end
end
end
```
注意,这只是一个简单的示例代码,实际上,ALNS算法还需要进行更多的参数调整和优化才能得到更好的结果。
阅读全文
相关推荐
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)