Traceback (most recent call last): File "E:\Duzhuan\anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 3460, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-2-eadcdc23616b>", line 1, in <module> runfile('C:\\Users\\zhangxiao\\Desktop\\Algorithm Integration\\d_1.py', wdir='C:\\Users\\zhangxiao\\Desktop\\Algorithm Integration') File "E:\Duzhuan\JetBrainsPyCharm 2023.1\PyCharm 2023.1\plugins\python\helpers\pydev\_pydev_bundle\pydev_umd.py", line 198, in runfile pydev_imports.execfile(filename, global_vars, local_vars) # execute the script File "E:\Duzhuan\JetBrainsPyCharm 2023.1\PyCharm 2023.1\plugins\python\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "C:\Users\zhangxiao\Desktop\Algorithm Integration\d_1.py", line 152, in <module> main() File "C:\Users\zhangxiao\Desktop\Algorithm Integration\d_1.py", line 117, in main cuckoo_result = cuckoo_search(unknown_nodes) File "C:\Users\zhangxiao\Desktop\Algorithm Integration\d_1.py", line 29, in cuckoo_search fitness_new = fitness(new_solution) File "C:\Users\zhangxiao\Desktop\Algorithm Integration\d_1.py", line 107, in fitness distances = np.linalg.norm(unknown_nodes[:, np.newaxis] - anchor_nodes, axis=2) File "<__array_function__ internals>", line 180, in norm File "E:\Duzhuan\anaconda\lib\site-packages\numpy\linalg\linalg.py", line 2557, in norm return sqrt(add.reduce(s, axis=axis, keepdims=keepdims)) numpy.AxisError: axis 2 is out of bounds for array of dimension 2
时间: 2023-07-21 20:10:04 浏览: 133
这个错误通常是因为在计算节点适应度时,尝试对维度不匹配的数组执行操作。根据您提供的错误信息,是因为在计算节点适应度时,尝试计算未知节点与锚节点之间的距离时出现了问题。
请检查以下几点,以解决这个错误:
1. 确保未知节点和锚节点的维度正确:`unknown_nodes`应该是一个形状为`(70, 2)`的数组,`anchor_nodes`应该是一个形状为`(30, 2)`的数组。
2. 检查节点适应度函数:在函数`fitness`中,确保正确计算未知节点与锚节点之间的距离。可以使用`np.linalg.norm()`函数来计算欧氏距离。
以下是一个可能修复错误的示例代码:
```python
# 计算节点适应度(示例中简化为距离锚节点的平均距离)
def fitness(nodes):
anchor_nodes = nodes[:30]
unknown_nodes = nodes[30:]
distances = np.linalg.norm(unknown_nodes[:, np.newaxis] - anchor_nodes, axis=1)
return np.mean(distances)
```
请确保在调用`np.linalg.norm()`函数时,维度匹配,并且未知节点和锚节点的维度正确。如果问题仍然存在,请提供相关代码的更多细节,以便我更好地帮助您解决问题。
相关问题
Traceback (most recent call last): File "D:\anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 3460, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-3-de046003dae8>", line 4, in <module> model = torch.load('D://大乐透5.h5') File "D:\anaconda\lib\site-packages\torch\serialization.py", line 713, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "D:\anaconda\lib\site-packages\torch\serialization.py", line 920, in _legacy_load magic_number = pickle_module.load(f, **pickle_load_args) _pickle.UnpicklingError: invalid load key, 'H'.
这个错误发生的原因是你正在尝试使用 PyTorch 中的 `torch.load()` 函数来加载一个 Keras 模型文件。Keras 模型文件通常是以 ".h5" 为扩展名,而 PyTorch 使用的默认扩展名是 ".pth" 或 ".pt"。
如果你要加载 Keras 模型文件,应该使用 Keras 中提供的函数,例如 `keras.models.load_model()`。示例代码如下:
```python
import keras
# 加载 Keras 模型
model = keras.models.load_model('D://大乐透5.h5')
# 查看模型结构
print(model.summary())
# 修改模型结构
model.layers.pop() # 删除最后一层
model.add(keras.layers.Dense(10, activation='softmax')) # 添加一个新的输出层
# 保存修改后的模型
model.save('modified_model.h5')
```
这里的代码假设你已经有一个名为 `D://大乐透5.h5` 的 Keras 模型文件。你可以使用 `model.summary()` 函数查看模型结构。这里的代码将删除模型的最后一层,并添加一个新的输出层,最后将修改后的模型保存为 `modified_model.h5`。
报错Traceback (most recent call last): File "E:\Anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 3343, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-37-e7a35394cf16>", line 6, in <module> Guangzhou_data = data.query('省 == "北京市" and 2000 <= 年份 <= 2019 月份 == 2').groupby(by='年份').mean() File "E:\Anaconda\lib\site-packages\pandas\core\frame.py", line 3231, in query res = self.eval(expr, **kwargs) File "E:\Anaconda\lib\site-packages\pandas\core\frame.py", line 3346, in eval return _eval(expr, inplace=inplace, **kwargs) File "E:\Anaconda\lib\site-packages\pandas\core\computation\eval.py", line 332, in eval parsed_expr = Expr(expr, engine=engine, parser=parser, env=env) File "E:\Anaconda\lib\site-packages\pandas\core\computation\expr.py", line 764, in __init__ self.terms = self.parse() File "E:\Anaconda\lib\site-packages\pandas\core\computation\expr.py", line 781, in parse return self._visitor.visit(self.expr) File "E:\Anaconda\lib\site-packages\pandas\core\computation\expr.py", line 371, in visit raise e File "E:\Anaconda\lib\site-packages\pandas\core\computation\expr.py", line 367, in visit node = ast.fix_missing_locations(ast.parse(clean)) File "E:\Anaconda\lib\ast.py", line 47, in parse return compile(source, filename, mode, flags, File "<unknown>", line 1 省 =="北京市"and 2000 <=年份 <=2019 月份 ==2 ^ SyntaxError: invalid syntax
根据报错信息,你的代码中存在语法错误,具体是在查询条件中出现了语法错误。检查后发现,查询条件中的语法错误是 `省 =="北京市"and 2000 <=年份 <=2019 月份 ==2`,其中缺少了 `and` 关键字,正确的写法应该是 `省 =="北京市" and 2000 <=年份 <=2019 and 月份 ==2`,需要在 `and` 后面添加两个空格,这样才能正确地识别出两个条件。
阅读全文