function [model, loglikHist] = mixexpFit(X, y, nmix, varargin) %% Fit a mixture of experts model via MLE/MAP using EM % If the response y is real-valued, we use linear regression experts. % If the response y is categorical, we use logistic regression experts. % % Inputs % % X - X(i, :) is the ith case, i.e. data is of size n-by-d % y - y(i) can be real valued or in {1..C} % nmix - the number of mixture components to use % % % Optional inputs % EMargs - cell array. See emAlgo. (Default {}) % fixmix - if true, mixing weights are constants independent of x % (default false) % nclasses - needed if not all labels are present in y % (default nunique(y)) % preproc - a struct, passed to preprocessorApplyToTtrain % By default, this adds ones and standardizes % gatingFitArgs - cell array, default {'lambda', 0.001} % expertFitArgs - cell array, default {'lambda', 0.001} % % Outputs % % A structure - see mixExpCreate for field descriptions % loglikHist - a record of the log likelihood at each EM iteration. %% % This file is from pmtk3.googlecode.com pp = preprocessorCreate('addOnes', true, 'standardizeX', true); [EMargs, fixmix, nclasses, preproc, gatingFitArgs, expertFitArgs] = ... process_options(varargin, ... 'EMargs', {}, 'fixmix', false, 'nclasses', [], 'preproc', pp, ... 'gatingFitArgs', {'lambda', 0.001}, ... 'expertFitArgs', {'lambda', 0.001}); [preproc, X] = preprocessorApplyToTrain(preproc, X); % We use k=1:nmix to index mixture components % and c=1:C to index output classes [N,D] = size(X); %X = standardize(X); %X = [ones(N,1) X]; %D = D+1; if isequal(y, round(y)) model.classifier = true; if isempty(nclasses) nclasses = numel(unique(y)); end else model.classifier = false; nclasses = 1; end data.X = X; data.y = y; model.nmix = nmix; model.nclasses = nclasses; model.D = D; model.preproc = preproc; model.expertFitArgs = expertFitArgs; model.gatingFitArgs = gatingFitArgs; model.fixmix = fixmix; model.modelType = 'mixexp'; [model, loglikHist] = emAlgo(model, data, @initFn, @estep, @mstep, ... EMargs{:}); end

时间: 2024-04-12 08:34:29 浏览: 9
这段代码是一个用于拟合混合专家模型的函数 `mixexpFit`。 该函数的输入参数包括: - `X`: 输入变量的数据,大小为 n-by-d,其中 n 是样本数,d 是输入变量的维度; - `y`: 输出变量的数据,可以是实值或者分类变量,大小为 n-by-1; - `nmix`: 混合成分的数量; - `varargin`: 可选参数,包括 EMargs、fixmix、nclasses、preproc、gatingFitArgs 和 expertFitArgs 等。 函数的输出包括: - `model`: 拟合后得到的混合专家模型,是一个结构体; - `loglikHist`: EM 算法迭代过程中的对数似然值记录。 在函数内部,首先对输入参数进行一些预处理操作,如标准化输入变量 `X`、添加偏置项等。 然后,根据输出变量 `y` 的类型(实值或分类变量),设置相应的模型类型和输出类别个数。 接下来,调用 EM 算法的函数 `emAlgo` 进行参数估计。其中,需要传入一些函数句柄,包括初始化函数 `initFn`、E 步函数 `estep` 和 M 步函数 `mstep`。还可以传入 EM 算法的参数 `EMargs`。 最后,将拟合得到的模型和对数似然值记录返回。 这段代码的作用是拟合一个混合专家模型,可以适用于实值或分类问题。模型的参数估计使用了 EM 算法。 如果还有其他问题,欢迎提问!
相关问题

function varargout = mixexpPredict(model, X) %% Predict using mixture of experts model % If the response y is real-valued, we return % [mu, sigma2, post, muk, sigma2k] = mixexpPredict(model, X) % mu(i) = E[y | X(i,:)] % sigma2(i) = var[y | X(i,:)] % weights(i,k) = p(expert = k | X(i,:) % muk(i) = E[y | X(i,:), expert k] % sigma2k(i) = var[y | X(i,:), expert k] % % If the response y is categorical, we return % [yhat, prob] = mixexpPredict(model, X) % yhat(i) = argmax p(y|X(i,:)) % prob(i,c) = p(y=c|X(i,:)) % This file is from pmtk3.googlecode.com [N,D] = size(X); %X = standardize(X); %X = [ones(N,1) X]; if isfield(model, 'preproc') [X] = preprocessorApplyToTest(model.preproc, X); end K = model.nmix; if model.fixmix weights = repmat(model.mixweights, N, 1); else weights = softmaxPmtk(X*model.Wq); % weights(n,q) end if model.classifier % implemented by JoAnne Ting prob = zeros(N, size(model.Wy,2)); yhat_k = zeros(N, model.Nclasses, K); for k = 1:K yhat_k(:,:,k) = softmaxPmtk(X*model.Wy(:,:,k)); % Weighted vote prob = prob + yhat_k(:,:,k) .* repmat(weights(:,k), 1, size(model.Wy,2)); end yhat = maxidx(prob, [], 2); varargout{1} = yhat; varargout{2} = prob; else % mean of a mixture model is given by % E[x] = sum_k pik muk %mu = sum(weights .* (X*model.Wy), 2); % variance of a mixture model is given by % sum_k pi_k [Sigmak + muk*muk'] - E[x] E[x]' muk = zeros(N,K); vk = zeros(N,K); mu = zeros(N,1); v = zeros(N,1); for k=1:K muk(:,k) = X*model.Wy(:,k); mu = mu + weights(:,k) .* muk(:,k); vk(:,k) = model.sigma2(k); v = v + weights(:,k) .* (vk(:,k) + muk(:,k).^2); end v = v-mu.^2; varargout{1} = mu; varargout{2} = v; varargout{3} = weights; varargout{4} = muk; varargout{5} = vk; end end

这是一个用于预测混合专家模型的函数。该函数可以根据输入的模型和数据,返回预测结果。如果目标变量 y 是实值型的,函数会返回预测的均值、方差以及后验概率。如果目标变量 y 是分类型的,函数会返回预测的类别以及类别的概率。 函数首先对输入数据 X 进行预处理(如果有预处理步骤),然后根据模型参数计算混合权重 weights。如果模型是分类器,则根据权重和类别权重参数计算类别概率,并选取概率最大的类别作为预测结果。如果模型不是分类器,则根据权重和模型参数计算预测的均值和方差,并返回混合权重、均值和方差。 该函数是从 pmtk3.googlecode.com 中获取的。

function model = initFn(model, data, r) %#ok nmix = model.nmix; D = model.D; C = model.nclasses; if model.classifier model.Wy = 0.1*randn(D,C,model.nmix); else model.Wy = 0.1*randn(D,nmix); model.sigma2 = 0.1*rand(1,nmix); end if model.fixmix model.mixweights = normalize(rand(1,nmix)); else model.Wq = 0.1*randn(D,nmix); end end

这段代码是用于初始化混合专家模型的函数 `initFn`。 函数的输入参数包括: - `model`: 混合专家模型的结构体,包含了模型的相关参数; - `data`: 数据集,包含输入变量 `X` 和输出变量 `y`; - `r`: EM 算法的当前迭代次数。 函数的输出是更新后的混合专家模型。 首先,从模型结构体中提取混合成分的数量 `nmix`、输入变量的维度 `D` 和输出类别个数 `C`。 然后,根据模型类型(分类问题或回归问题),初始化权重矩阵 `Wy` 和混合成分的方差 `sigma2`。如果是分类问题,则 `Wy` 是一个大小为 D-by-C-by-nmix 的三维数组,每个混合成分有一个权重矩阵;如果是回归问题,则 `Wy` 是一个大小为 D-by-nmix 的二维数组。 接下来,根据模型是否固定混合权重 `fixmix` 的取值,初始化混合权重矩阵 `mixweights` 或权重矩阵 `Wq`。如果 `fixmix` 为真,则 `mixweights` 是一个大小为 1-by-nmix 的一维数组,表示每个混合成分的权重;如果 `fixmix` 为假,则 `Wq` 是一个大小为 D-by-nmix 的二维数组,表示每个混合成分的权重。 最后,将更新后的模型返回。 这段代码的作用是根据模型的参数设置初始化混合专家模型的权重矩阵和混合权重。 如果还有其他问题,欢迎提问!

相关推荐

最新推荐

recommend-type

setuptools-0.6b3-py2.4.egg

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

Java项目之jspm充电桩综合管理系统(源码 + 说明文档)

Java项目之jspm充电桩综合管理系统(源码 + 说明文档) 2 系统开发环境 4 2.1 Java技术 4 2.2 JSP技术 4 2.3 B/S模式 4 2.4 MyEclipse环境配置 5 2.5 MySQL环境配置 5 2.6 SSM框架 6 3 系统分析 7 3.1 系统可行性分析 7 3.1.1 经济可行性 7 3.1.2 技术可行性 7 3.1.3 运行可行性 7 3.2 系统现状分析 7 3.3 功能需求分析 8 3.4 系统设计规则与运行环境 9 3.5系统流程分析 9 3.5.1操作流程 9 3.5.2添加信息流程 10 3.5.3删除信息流程 11 4 系统设计 12 4.1 系统设计主要功能 12 4.2 数据库设计 13 4.2.1 数据库设计规范 13 4.2.2 E-R图 13 4.2.3 数据表 14 5 系统实现 24 5.1系统功能模块 24 5.2后台功能模块 26 5.2.1管理员功能 26 5.2.2用户功能 30 6 系统测试 32 6.1 功能测试 32 6.2 可用性测试 32 6.3 维护测试 33 6.4 性能测试 33
recommend-type

基于JSP药品进货销售库存管理系统源码.zip

这个是一个JSP药品进货销售库存管理系统,管理员角色包含以下功能:管理员登录,进货管理,销售管理,库存管理,员工管理,客户管理,供应商管理,修改密码等功能。 本项目实现的最终作用是基于JSP药品进货销售库存管理系统 分为1个角色 第1个角色为管理员角色,实现了如下功能: - 供应商管理 - 修改密码 - 员工管理 - 客户管理 - 库存管理 - 管理员登录 - 进货管理 - 销售管理
recommend-type

基于JSP商品销售管理系统源码.zip

这个是一个JSP商品销售管理系统,管理员角色包含以下功能:管理员登录,管理员首页,用户管理,供应商管理,商品管理,入库管理,出库管理,系统公告管理,管理员信息修改等功能。用户角色包含以下功能:用户注册,用户登录,供应商管理,商品管理,入库管理,出库管理,系统公告查看,个人信息修改等功能。 本项目实现的最终作用是基于JSP商品销售管理系统 分为2个角色 第1个角色为管理员角色,实现了如下功能: - 供应商管理 - 入库管理 - 出库管理 - 商品管理 - 用户管理 - 管理员信息修改 - 管理员登录 - 管理员首页 - 系统公告管理 第2个角色为用户角色,实现了如下功能: - 个人信息修改 - 供应商管理 - 入库管理 - 出库管理 - 商品管理 - 用户注册 - 用户登录 - 系统公告查看
recommend-type

什么是mysql以及学习了解mysql的意义是什么

mysql
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。