function [model, loglikHist] = mixexpFit(X, y, nmix, varargin) %% Fit a mixture of experts model via MLE/MAP using EM % If the response y is real-valued, we use linear regression experts. % If the response y is categorical, we use logistic regression experts. % % Inputs % % X - X(i, :) is the ith case, i.e. data is of size n-by-d % y - y(i) can be real valued or in {1..C} % nmix - the number of mixture components to use % % % Optional inputs % EMargs - cell array. See emAlgo. (Default {}) % fixmix - if true, mixing weights are constants independent of x % (default false) % nclasses - needed if not all labels are present in y % (default nunique(y)) % preproc - a struct, passed to preprocessorApplyToTtrain % By default, this adds ones and standardizes % gatingFitArgs - cell array, default {'lambda', 0.001} % expertFitArgs - cell array, default {'lambda', 0.001} % % Outputs % % A structure - see mixExpCreate for field descriptions % loglikHist - a record of the log likelihood at each EM iteration. %% % This file is from pmtk3.googlecode.com pp = preprocessorCreate('addOnes', true, 'standardizeX', true); [EMargs, fixmix, nclasses, preproc, gatingFitArgs, expertFitArgs] = ... process_options(varargin, ... 'EMargs', {}, 'fixmix', false, 'nclasses', [], 'preproc', pp, ... 'gatingFitArgs', {'lambda', 0.001}, ... 'expertFitArgs', {'lambda', 0.001}); [preproc, X] = preprocessorApplyToTrain(preproc, X); % We use k=1:nmix to index mixture components % and c=1:C to index output classes [N,D] = size(X); %X = standardize(X); %X = [ones(N,1) X]; %D = D+1; if isequal(y, round(y)) model.classifier = true; if isempty(nclasses) nclasses = numel(unique(y)); end else model.classifier = false; nclasses = 1; end data.X = X; data.y = y; model.nmix = nmix; model.nclasses = nclasses; model.D = D; model.preproc = preproc; model.expertFitArgs = expertFitArgs; model.gatingFitArgs = gatingFitArgs; model.fixmix = fixmix; model.modelType = 'mixexp'; [model, loglikHist] = emAlgo(model, data, @initFn, @estep, @mstep, ... EMargs{:}); end

时间: 2024-04-12 13:34:29 浏览: 155
这段代码是一个用于拟合混合专家模型的函数 `mixexpFit`。 该函数的输入参数包括: - `X`: 输入变量的数据,大小为 n-by-d,其中 n 是样本数,d 是输入变量的维度; - `y`: 输出变量的数据,可以是实值或者分类变量,大小为 n-by-1; - `nmix`: 混合成分的数量; - `varargin`: 可选参数,包括 EMargs、fixmix、nclasses、preproc、gatingFitArgs 和 expertFitArgs 等。 函数的输出包括: - `model`: 拟合后得到的混合专家模型,是一个结构体; - `loglikHist`: EM 算法迭代过程中的对数似然值记录。 在函数内部,首先对输入参数进行一些预处理操作,如标准化输入变量 `X`、添加偏置项等。 然后,根据输出变量 `y` 的类型(实值或分类变量),设置相应的模型类型和输出类别个数。 接下来,调用 EM 算法的函数 `emAlgo` 进行参数估计。其中,需要传入一些函数句柄,包括初始化函数 `initFn`、E 步函数 `estep` 和 M 步函数 `mstep`。还可以传入 EM 算法的参数 `EMargs`。 最后,将拟合得到的模型和对数似然值记录返回。 这段代码的作用是拟合一个混合专家模型,可以适用于实值或分类问题。模型的参数估计使用了 EM 算法。 如果还有其他问题,欢迎提问!
相关问题

function varargout = mixexpPredict(model, X) %% Predict using mixture of experts model % If the response y is real-valued, we return % [mu, sigma2, post, muk, sigma2k] = mixexpPredict(model, X) % mu(i) = E[y | X(i,:)] % sigma2(i) = var[y | X(i,:)] % weights(i,k) = p(expert = k | X(i,:) % muk(i) = E[y | X(i,:), expert k] % sigma2k(i) = var[y | X(i,:), expert k] % % If the response y is categorical, we return % [yhat, prob] = mixexpPredict(model, X) % yhat(i) = argmax p(y|X(i,:)) % prob(i,c) = p(y=c|X(i,:)) % This file is from pmtk3.googlecode.com [N,D] = size(X); %X = standardize(X); %X = [ones(N,1) X]; if isfield(model, 'preproc') [X] = preprocessorApplyToTest(model.preproc, X); end K = model.nmix; if model.fixmix weights = repmat(model.mixweights, N, 1); else weights = softmaxPmtk(X*model.Wq); % weights(n,q) end if model.classifier % implemented by JoAnne Ting prob = zeros(N, size(model.Wy,2)); yhat_k = zeros(N, model.Nclasses, K); for k = 1:K yhat_k(:,:,k) = softmaxPmtk(X*model.Wy(:,:,k)); % Weighted vote prob = prob + yhat_k(:,:,k) .* repmat(weights(:,k), 1, size(model.Wy,2)); end yhat = maxidx(prob, [], 2); varargout{1} = yhat; varargout{2} = prob; else % mean of a mixture model is given by % E[x] = sum_k pik muk %mu = sum(weights .* (X*model.Wy), 2); % variance of a mixture model is given by % sum_k pi_k [Sigmak + muk*muk'] - E[x] E[x]' muk = zeros(N,K); vk = zeros(N,K); mu = zeros(N,1); v = zeros(N,1); for k=1:K muk(:,k) = X*model.Wy(:,k); mu = mu + weights(:,k) .* muk(:,k); vk(:,k) = model.sigma2(k); v = v + weights(:,k) .* (vk(:,k) + muk(:,k).^2); end v = v-mu.^2; varargout{1} = mu; varargout{2} = v; varargout{3} = weights; varargout{4} = muk; varargout{5} = vk; end end

这是一个用于预测混合专家模型的函数。该函数可以根据输入的模型和数据,返回预测结果。如果目标变量 y 是实值型的,函数会返回预测的均值、方差以及后验概率。如果目标变量 y 是分类型的,函数会返回预测的类别以及类别的概率。 函数首先对输入数据 X 进行预处理(如果有预处理步骤),然后根据模型参数计算混合权重 weights。如果模型是分类器,则根据权重和类别权重参数计算类别概率,并选取概率最大的类别作为预测结果。如果模型不是分类器,则根据权重和模型参数计算预测的均值和方差,并返回混合权重、均值和方差。 该函数是从 pmtk3.googlecode.com 中获取的。

function model = mstep(model, ess) X = ess.data.X; y = ess.data.y; N = size(X,1); r = ess.post; % responsibilities if model.fixmix model.mixweights = sum(r,1)/N; else [WqModel] = logregFit(X, r, 'preproc', [], ... 'nclasses', model.nclasses, model.gatingFitArgs{:}); model.Wq = WqModel.w; end if ~model.classifier % weighted least squares K = model.nmix; D = size(X,2); for k=1:K expert = linregFit(X, y, 'preproc', [], 'weights', r(:,k), ... model.expertFitArgs{:}); model.Wy(:,k) = expert.w; model.sigma2(k) = expert.sigma2; %{ Rk = diag(r(:,k)); RRk = sqrt(Rk); model.Wy(:,k) = (RRk*X) \ (RRk*y); yhat = X*model.Wy(:,k); rk = sum(r(:,k)); if rk==0 model.sigma2(k) = eps; else model.sigma2(k) = sum(r(:,k) .* (y-yhat).^2) / sum(r(:,k)); end assert(~isnan(model.sigma2(k))) assert(model.sigma2(k)>0) %} end else % weighted logreg K = model.nmix; D = size(X,2); for k = 1:K Rk = diag(round(r(:,k))); %model_k = logregFit(Rk*X, y, 'preproc', [], 'nclasses', model.nclasses, ... % model.expertFitArgs{:}); model_k = logregFit(X, y, 'preproc', [], 'nclasses', model.nclasses, ... 'weights', r(:,k), model.expertFitArgs{:}); model.Wy(:,:,k) = model_k.w; end end end

这段代码是 M 步函数 `mstep` 的实现。 该函数的输入参数包括: - `model`: 混合专家模型,是一个结构体,包含了模型的参数; - `ess`: 期望后验分布的统计量,包含了数据集和后验概率。 函数的输出是更新后的混合专家模型。 在函数内部,首先从期望后验分布的统计量中提取输入变量 `X` 和输出变量 `y`,以及样本数量 `N` 和后验概率 `r`。 然后,根据模型是否固定混合权重 `fixmix` 的取值,更新混合权重矩阵 `mixweights` 或权重矩阵 `Wq`。如果 `fixmix` 为真,则通过计算每个混合成分的概率和的均值得到混合权重;如果 `fixmix` 为假,则调用 `logregFit` 函数基于输入变量 `X` 和后验概率 `r` 进行逻辑回归拟合,得到权重矩阵 `Wq`。 接下来,根据模型是否为分类问题或回归问题,更新权重矩阵 `Wy` 和混合成分的方差 `sigma2`。如果是回归问题,则对于每个混合成分,调用 `linregFit` 函数基于输入变量 `X`、输出变量 `y` 和样本权重 `r` 进行加权线性回归拟合,得到权重矩阵 `Wy` 和方差 `sigma2`;如果是分类问题,则对于每个混合成分,调用 `logregFit` 函数基于输入变量 `X`、输出变量 `y` 和样本权重 `r` 进行加权逻辑回归拟合,得到权重矩阵 `Wy`。 最后,将更新后的模型返回。 这段代码的作用是根据期望后验分布的统计量更新混合专家模型的参数。 如果还有其他问题,欢迎提问!
阅读全文

相关推荐

最新推荐

recommend-type

在 Blender 2.6 中导入,导出 .x 文件.zip

在 Blender 2.6 中导入/导出 .x 文件Blender 2.6 的 DirectX 导入器插件第一个目标. 从 .x 文件导入任何内容。 显然是垂直、垂直面,但还有紫外线、骨架、重量、法线……. 也以二进制格式导入 .x地平线. 导出至 .x 或修改/共同维护现有的 x 导出器。. 该项目也是“Blender Exchange Layer”项目的原型。 BEL 将是逻辑上位于导入器/导出器之间的公共层 插件和搅拌机数据格式,将允许 . 提供一组通用的方法来检索/注入 Blender 中的对象 . 提供一套通用的转换和选择工具 导入/导出脚本和 Blender 数据(旋转、重新缩放、过滤......) . 为新的 io 插件提供一组通用的解析助手不幸的是,PLY 不能使用(据我测试,它太慢了)测试脚本 . 复制 /scripts/addons 或 addons_contrib 中的 'io_directx_bel' . 启动搅拌机 . 在用户偏好设置 > 插件中启用插件 . 使用文件
recommend-type

基于python、open-cv、pywin32等类库搭建eve手游预警机系统详细文档+资料齐全.zip

【资源说明】 基于python、open-cv、pywin32等类库搭建eve手游预警机系统详细文档+资料齐全.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

【路径规划】蛇算法栅格地图机器人最短路径规划【含Matlab仿真 2957期】.zip

CSDN Matlab武动乾坤上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

基于 Forge API 实现的图形技术,这是一个基于 Vulkan、DirectX、Metal 的跨平台渲染框架.zip

学习和测试Forge 渲染 API实现 绘制纹理四边形 实例化 冯氏着色 光照贴图 照明(Blinn-Phong)定向光点光源聚光灯 负荷模型 古奇阴影分析和 UI 延迟光照 模板缓冲区卡通着色 镶嵌直通PN 三角形 盛开 HDR 渲染 伽马校正动态色调映射/HDR环境测绘立方体贴图反射球面地图反射法线贴图视差贴图阴影贴图 环境光遮蔽详细程度遮挡查询运动模糊屏幕截图1. 实例化2. Blinn-Phong 光照贴图使用 Blinn-Phong 照明模型,其中包含 3 种类型的光源1.点光源 2.定向光源 3.聚光源和镜面反射贴图,以突出显示立方体的外边缘。Blinn -Phong 学习 OpenGL3. 延迟照明Blinn-Phong 延迟渲染。它在第一遍中写入法线/位置/颜色贴图,然后使用作为统一和结构化缓冲区传递到 GPU 的灯光数据来计算使用这些纹理的颜色。延迟渲染由于内存问题,在高分辨率( 2K / 4K )设备(如控制台)上运行效果不佳,建议改用可视性缓冲区。此外,在移动设备上,最好使用
recommend-type

【路径规划】海洋捕食算法栅格地图机器人最短路径规划【含Matlab仿真 2855期】.zip

CSDN Matlab武动乾坤上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

MATLAB新功能:Multi-frame ViewRGB制作彩色图阴影

资源摘要信息:"MULTI_FRAME_VIEWRGB 函数是用于MATLAB开发环境下创建多帧彩色图像阴影的一个实用工具。该函数是MULTI_FRAME_VIEW函数的扩展版本,主要用于处理彩色和灰度图像,并且能够为多种帧创建图形阴影效果。它适用于生成2D图像数据的体视效果,以便于对数据进行更加直观的分析和展示。MULTI_FRAME_VIEWRGB 能够处理的灰度图像会被下采样为8位整数,以确保在处理过程中的高效性。考虑到灰度图像处理的特异性,对于灰度图像建议直接使用MULTI_FRAME_VIEW函数。MULTI_FRAME_VIEWRGB 函数的参数包括文件名、白色边框大小、黑色边框大小以及边框数等,这些参数可以根据用户的需求进行调整,以获得最佳的视觉效果。" 知识点详细说明: 1. MATLAB开发环境:MULTI_FRAME_VIEWRGB 函数是为MATLAB编写的,MATLAB是一种高性能的数值计算环境和第四代编程语言,广泛用于算法开发、数据可视化、数据分析以及数值计算等场合。在进行复杂的图像处理时,MATLAB提供了丰富的库函数和工具箱,能够帮助开发者高效地实现各种图像处理任务。 2. 图形阴影(Shadowing):在图像处理和计算机图形学中,阴影的添加可以使图像或图形更加具有立体感和真实感。特别是在多帧视图中,阴影的使用能够让用户更清晰地区分不同的数据层,帮助理解图像数据中的层次结构。 3. 多帧(Multi-frame):多帧图像处理是指对一系列连续的图像帧进行处理,以实现动态视觉效果或分析图像序列中的动态变化。在诸如视频、连续医学成像或动态模拟等场景中,多帧处理尤为重要。 4. RGB 图像处理:RGB代表红绿蓝三种颜色的光,RGB图像是一种常用的颜色模型,用于显示颜色信息。RGB图像由三个颜色通道组成,每个通道包含不同颜色强度的信息。在MULTI_FRAME_VIEWRGB函数中,可以处理彩色图像,并生成彩色图阴影,增强图像的视觉效果。 5. 参数调整:在MULTI_FRAME_VIEWRGB函数中,用户可以根据需要对参数进行调整,比如白色边框大小(we)、黑色边框大小(be)和边框数(ne)。这些参数影响着生成的图形阴影的外观,允许用户根据具体的应用场景和视觉需求,调整阴影的样式和强度。 6. 下采样(Downsampling):在处理图像时,有时会进行下采样操作,以减少图像的分辨率和数据量。在MULTI_FRAME_VIEWRGB函数中,灰度图像被下采样为8位整数,这主要是为了减少处理的复杂性和加快处理速度,同时保留图像的关键信息。 7. 文件名结构数组:MULTI_FRAME_VIEWRGB 函数使用文件名的结构数组作为输入参数之一。这要求用户提前准备好包含所有图像文件路径的结构数组,以便函数能够逐个处理每个图像文件。 8. MATLAB函数使用:MULTI_FRAME_VIEWRGB函数的使用要求用户具备MATLAB编程基础,能够理解函数的参数和输入输出格式,并能够根据函数提供的用法说明进行实际调用。 9. 压缩包文件名列表:在提供的资源信息中,有两个压缩包文件名称列表,分别是"multi_frame_viewRGB.zip"和"multi_fram_viewRGB.zip"。这里可能存在一个打字错误:"multi_fram_viewRGB.zip" 应该是 "multi_frame_viewRGB.zip"。需要正确提取压缩包中的文件,并且解压缩后正确使用文件名结构数组来调用MULTI_FRAME_VIEWRGB函数。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

在Flow-3D中如何根据水利工程的特定需求设定边界条件和进行网格划分,以便准确模拟水流问题?

要在Flow-3D中设定合适的边界条件和进行精确的网格划分,首先需要深入理解水利工程的具体需求和流体动力学的基本原理。推荐参考《Flow-3D水利教程:边界条件设定与网格划分》,这份资料详细介绍了如何设置工作目录,创建模拟文档,以及进行网格划分和边界条件设定的全过程。 参考资源链接:[Flow-3D水利教程:边界条件设定与网格划分](https://wenku.csdn.net/doc/23xiiycuq6?spm=1055.2569.3001.10343) 在设置边界条件时,需要根据实际的水利工程项目来确定,如在模拟渠道流动时,可能需要设定速度边界条件或水位边界条件。对于复杂的
recommend-type

XKCD Substitutions 3-crx插件:创新的网页文字替换工具

资源摘要信息: "XKCD Substitutions 3-crx插件是一个浏览器扩展程序,它允许用户使用XKCD漫画中的内容替换特定网站上的单词和短语。XKCD是美国漫画家兰德尔·门罗创作的一个网络漫画系列,内容通常涉及幽默、科学、数学、语言和流行文化。XKCD Substitutions 3插件的核心功能是提供一个替换字典,基于XKCD漫画中的特定作品(如漫画1288、1625和1679)来替换文本,使访问网站的体验变得风趣并且具有教育意义。用户可以在插件的选项页面上自定义替换列表,以满足个人的喜好和需求。此外,该插件提供了不同的文本替换样式,包括无提示替换、带下划线的替换以及高亮显示替换,旨在通过不同的视觉效果吸引用户对变更内容的注意。用户还可以将特定网站列入黑名单,防止插件在这些网站上运行,从而避免在不希望干扰的网站上出现替换文本。" 知识点: 1. 浏览器扩展程序简介: 浏览器扩展程序是一种附加软件,可以增强或改变浏览器的功能。用户安装扩展程序后,可以在浏览器中添加新的工具或功能,比如自动填充表单、阻止弹窗广告、管理密码等。XKCD Substitutions 3-crx插件即为一种扩展程序,它专门用于替换网页文本内容。 2. XKCD漫画背景: XKCD是由美国计算机科学家兰德尔·门罗创建的网络漫画系列。门罗以其独特的幽默感著称,漫画内容经常涉及科学、数学、工程学、语言学和流行文化等领域。漫画风格简洁,通常包含幽默和讽刺的元素,吸引了全球大量科技和学术界人士的关注。 3. 插件功能实现: XKCD Substitutions 3-crx插件通过内置的替换规则集来实现文本替换功能。它通过匹配用户访问的网页中的单词和短语,并将其替换为XKCD漫画中的相应条目。例如,如果漫画1288、1625和1679中包含特定的短语或词汇,这些内容就可以被自动替换为插件所识别并替换的文本。 4. 用户自定义替换列表: 插件允许用户访问选项页面来自定义替换列表,这意味着用户可以根据自己的喜好添加、删除或修改替换规则。这种灵活性使得XKCD Substitutions 3成为一个高度个性化的工具,用户可以根据个人兴趣和阅读习惯来调整插件的行为。 5. 替换样式与用户体验: 插件提供了多种文本替换样式,包括无提示替换、带下划线的替换以及高亮显示替换。每种样式都有其特定的用户体验设计。无提示替换适用于不想分散注意力的用户;带下划线的替换和高亮显示替换则更直观地突出显示了被替换的文本,让更改更为明显,适合那些希望追踪替换效果的用户。 6. 黑名单功能: 为了避免在某些网站上无意中干扰网页的原始内容,XKCD Substitutions 3-crx插件提供了黑名单功能。用户可以将特定的域名加入黑名单,防止插件在这些网站上运行替换功能。这样可以保证用户在需要专注阅读的网站上,如工作相关的平台或个人兴趣网站,不会受到插件内容替换的影响。 7. 扩展程序与网络安全: 浏览器扩展程序可能会涉及到用户数据和隐私安全的问题。因此,安装和使用任何第三方扩展程序时,用户都应该确保来源的安全可靠,避免授予不必要的权限。同时,了解扩展程序的权限范围和它如何处理用户数据对于保护个人隐私是至关重要的。 通过这些知识点,可以看出XKCD Substitutions 3-crx插件不仅仅是一个简单的文本替换工具,而是一个结合了个人化定制、交互体验设计以及用户隐私保护的实用型扩展程序。它通过幽默风趣的XKCD漫画内容为用户带来不一样的网络浏览体验。