yen算法求k短路代码
时间: 2023-11-25 21:07:22 浏览: 128
以下是基于 Dijkstra 算法的 Yen 算法求 k 短路的 Python 代码实现:
```python
from queue import PriorityQueue
from collections import defaultdict
def dijkstra(graph, start, end=None):
# 初始化距离和前驱节点
distance = {start: 0}
predecessor = {start: None}
# 初始化优先队列,按距离排序
pq = PriorityQueue()
pq.put((0, start))
while not pq.empty():
# 取出距离最小的节点
curr_dist, curr_node = pq.get()
# 如果已经到达终点,则返回到达终点的距离和路径
if end is not None and curr_node == end:
path = []
while curr_node is not None:
path.append(curr_node)
curr_node = predecessor[curr_node]
path.reverse()
return curr_dist, path
# 遍历当前节点的所有邻居节点
for neighbor, weight in graph[curr_node].items():
# 计算到邻居节点的距离
new_dist = curr_dist + weight
# 更新邻居节点的距离和前驱节点
if neighbor not in distance or new_dist < distance[neighbor]:
distance[neighbor] = new_dist
predecessor[neighbor] = curr_node
pq.put((new_dist, neighbor))
# 如果没有到达终点,则返回起点到所有节点的距离和前驱节点
return distance, predecessor
def yen_k_shortest_paths(graph, start, end, k):
# 初始化最短路径和备选路径
A = [(None, [start])]
B = PriorityQueue()
for k in range(1, k+1):
# 遍历备选路径
for i in range(len(A[-1][1])-1):
# 切断备选路径中的边
spur_node = A[-1][1][i]
root_path = A[-1][1][:i+1]
# 构建新的图
subgraph = defaultdict(dict)
for path_dist, path in A:
if root_path == path[:i+1]:
src = path[i]
dst = path[i+1]
subgraph[src][dst] = graph[src][dst]
for node in root_path:
if node != spur_node:
# 移除所有与 spur_node 相邻的节点
for neighbor in subgraph[spur_node]:
del subgraph[neighbor][spur_node]
del subgraph[spur_node]
# 执行 Dijkstra 算法,计算 spur_node 到所有节点的最短路径
spur_path_dist, spur_path = dijkstra(subgraph, spur_node, end)
if spur_path is not None:
# 将 spur_path 和 root_path 合并成一条路径
total_path = root_path[:-1] + spur_path
# 计算总距离
total_dist = 0
for j in range(len(total_path)-1):
total_dist += graph[total_path[j]][total_path[j+1]]
# 将新路径加入备选路径
B.put((total_dist, total_path))
# 如果没有更多备选路径,则退出循环
if B.empty():
break
# 如果没有更多备选路径,则退出循环
if B.empty():
break
# 选择距离最短的路径作为最新的最短路径
shortest_dist, shortest_path = B.get()
A.append((shortest_dist, shortest_path))
# 返回前 k 条最短路径
return [path for dist, path in A[:k]]
```
其中,`graph` 是一个字典,表示图中的邻接矩阵。例如,`graph[src][dst]` 表示从 `src` 到 `dst` 的边权重。`start` 和 `end` 分别表示起点和终点。`k` 表示求前 k 条最短路径。函数 `yen_k_shortest_paths` 返回前 k 条最短路径的列表,每个路径都是一个节点列表。
阅读全文