Dijkstra算法求第k短路

时间: 2023-07-10 09:05:31 浏览: 102
Dijkstra算法是解决单源最短路径的经典算法,但是它不能直接求解第k短路。下面介绍一种基于Dijkstra算法的求解第k短路的方法——Yen's算法。 Yen's算法基于贪心策略,它通过对原始图进行多次修改来求解第k短路。具体过程如下: 1. 使用Dijkstra算法求解原始图中的最短路和对应的最短距离。 2. 从最短路中删除最后一个节点,得到一个新的路径。 3. 对新的路径进行修剪,去掉与原始图中已有的路径相重复的部分。 4. 将修剪后的路径作为新的起点,并使用Dijkstra算法求解从该起点到所有其他节点的最短路和对应的最短距离。 5. 如果修剪后的路径不存在,则停止算法。否则,将新的最短路加入到优先队列中,并将已有的最短路中最长的路径弹出。 6. 重复步骤2~5,直到找到第k短路或者优先队列为空。 需要注意的是,Yen's算法的时间复杂度与图的规模和k值都有关系,因此在实际应用中需要根据具体情况进行优化。
相关问题

Dijkstra算法求第k短路的时间复杂度

Dijkstra算法用于求最短路径,并不能直接用来求第k短路。但是,Dijkstra算法可以被改进来解决求第k短路的问题。 改进后的Dijkstra算法的时间复杂度是O(m log n + k log n)。其中,m是图中的边数,n是图中的点数,k是所求的第k短路。

dijkstra算法求一个最短路问题

Dijkstra算法是一种用于解决带权重图中的单源最短路径问题的算法,其中权重可以是负数,但不能存在负权重的环。该算法在使用中需要构建一个最短路径树,同时记录每个顶点到源节点的最短距离。 以下是Dijkstra算法的具体步骤: 1. 创建一个空的最短路径树,并将源节点添加进去。同时初始化每个节点的距离值为无穷大,源节点距离为0。 2. 遍历与源节点相连的所有节点,更新这些节点的距离值为与源节点相连边的权重值,并将这些节点添加到最短路径树中。 3. 从未加入最短路径树的节点中选择距离值最小的节点,并将其加入到最短路径树中。 4. 更新新加入节点相连的所有节点的距离值,如果更新后的距离值比原来的小,则更新它们的距离值。 5. 重复执行步骤3和步骤4,直到所有节点都加入到最短路径树中,或者找到了目标节点。 以下是Matlab代码实现Dijkstra算法,其中graph表示输入的邻接矩阵,start_node表示起始节点编号,end_node表示目标节点编号: ``` function [dist,path] = dijkstra(graph, start_node, end_node) % 初始化dist和path num_nodes = size(graph, 1); dist = inf(num_nodes, 1); path = zeros(num_nodes, 1); visited = zeros(num_nodes, 1); dist(start_node) = 0; path(start_node) = -1; % 迭代计算最短路径 for i=1:num_nodes % 选择未访问节点中距离最小的节点 min_dist = inf; min_index = -1; for j=1:num_nodes if ~visited(j) && dist(j) < min_dist min_dist = dist(j); min_index = j; end end % 如果找不到可达节点,则退出 if min_index == -1 break; end % 更新dist和path visited(min_index) = 1; for j=1:num_nodes if graph(min_index,j) > 0 && ~visited(j) new_dist = dist(min_index) + graph(min_index,j); if new_dist < dist(j) dist(j) = new_dist; path(j) = min_index; end end end % 如果已经找到目标节点,则退出 if min_index == end_node break; end end % 构建最短路径 if path(end_node) == 0 path = []; else path_nodes = []; current_node = end_node; while current_node ~= -1 path_nodes = [path_nodes; current_node]; current_node = path(current_node); end path = flip(path_nodes)'; end end ```

相关推荐

最新推荐

recommend-type

Dijkstra标号方法求最短路问题

Dijkstra 标号方法求最短路问题。求出发点到各个点的最短路,能够把同时最小的多个路径求出来
recommend-type

python实现dijkstra最短路由算法

Dijkstra算法是图论中的一个重要算法,用于寻找有向图中单源最短路径。它由荷兰计算机科学家艾兹格·迪科斯彻在1959年提出,主要用于解决从一个顶点到其他所有顶点的最短路径问题。在Python中实现Dijkstra算法,我们...
recommend-type

Dijkstra算法求任意两个城市之间最短路径

根据所给的全国地图建立相应的数据存储,使用Dijkstra算法求任意两点间的最短路径,选择出最短的路径。
recommend-type

matlab Dijkstra最短路算法通用程序

图论基础,matlab程序。Dijkstra最短路算法Matlab程序用于求从起始点s到其它各点的最短路
recommend-type

2024年欧洲化学电镀市场主要企业市场占有率及排名.docx

2024年欧洲化学电镀市场主要企业市场占有率及排名.docx
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。