kmeans聚类算法python 使用mnist数据
时间: 2023-06-22 22:37:07 浏览: 179
python实现kmeans聚类算法
5星 · 资源好评率100%
好的,我可以为您提供关于使用k-means算法对MNIST数据集进行聚类的Python代码。
首先,您需要导入所需的库:
```python
from sklearn.cluster import KMeans
from sklearn.datasets import fetch_openml
import numpy as np
import matplotlib.pyplot as plt
```
然后,您可以使用fetch_openml函数从OpenML获取MNIST数据集:
```python
mnist = fetch_openml('mnist_784')
X = mnist.data.astype('float32') / 255.0 # 将像素值缩放到0到1之间
y = mnist.target.astype('int64')
```
接下来,您可以使用KMeans算法对MNIST数据进行聚类:
```python
kmeans = KMeans(n_clusters=10, random_state=42)
kmeans.fit(X)
```
最后,您可以可视化聚类结果:
```python
fig, axes = plt.subplots(2, 5, figsize=(8, 3))
for i, ax in enumerate(axes.flat):
center = kmeans.cluster_centers_[i]
ax.imshow(center.reshape(28, 28), cmap='binary')
ax.set_title(f'Cluster {i}')
ax.axis('off')
plt.show()
```
这将显示10个聚类中心,每个聚类中心表示一组相似的数字图像。
希望这可以帮助您开始使用KMeans算法对MNIST数据进行聚类。
阅读全文