import numpy as np import cv2 class ColorMeter(object): color_hsv = { # HSV,H表示色调(度数表示0-180),S表示饱和度(取值0-255),V表示亮度(取值0-255) # "orange": [np.array([11, 115, 70]), np.array([25, 255, 245])], "yellow": [np.array([11, 115, 70]), np.array([34, 255, 245])], "green": [np.array([35, 115, 70]), np.array([77, 255, 245])], "lightblue": [np.array([78, 115, 70]), np.array([99, 255, 245])], "blue": [np.array([100, 115, 70]), np.array([124, 255, 245])], "purple": [np.array([125, 115, 70]), np.array([155, 255, 245])], "red": [np.array([156, 115, 70]), np.array([179, 255, 245])], } def __init__(self, is_show=False): self.is_show = is_show self.img_shape = None def detect_color(self, frame): self.img_shape = frame.shape res = {} # 将图像转化为HSV格式 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) for text, range_ in self.color_hsv.items(): # 去除颜色范围外的其余颜色 mask = cv2.inRange(hsv, range_[0], range_[1]) erosion = cv2.erode(mask, np.ones((1, 1), np.uint8), iterations=2) dilation = cv2.dilate(erosion, np.ones((1, 1), np.uint8), iterations=2) target = cv2.bitwise_and(frame, frame, mask=dilation) # 将滤波后的图像变成二值图像放在binary中 ret, binary = cv2.threshold(dilation, 127, 255, cv2.THRESH_BINARY) # 在binary中发现轮廓,轮廓按照面积从小到大排列 contours, hierarchy = cv2.findContours( binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) if len(contours) > 0: # cv2.boundingRect()返回轮廓矩阵的坐标值,四个值为x, y, w, h, 其中x, y为左上角坐标,w,h为矩阵的宽和高 boxes = [ box for box in [cv2.boundingRect(c) for c in contours] if min(frame.shape[0], frame.shape[1]) / 10 < min(box[2], box[3]) < min(frame.shape[0], frame.shape[1]) / 1 ] if boxes: res[text] = boxes if self.is_show: for box in boxes: x, y, w, h = box # 绘制矩形框对轮廓进行定位 cv2.rectangle( frame, (x, y), (x + w, y + h), (153, 153, 0), 2 ) # 将绘制的图像保存并展示 # cv2.imwrite(save_image, img) cv2.putText( frame, # image text, # text (x, y), # literal direction cv2.FONT_HERSHEY_SIMPLEX, # dot font 0.9, # scale (255, 255, 0), # color 2, # border ) if self.is_show: cv2.imshow("image", frame) cv2.waitKey(1) # cv2.destroyAllWindows() return res if __name__ == "__main__": cap = cv2.VideoCapture(0) m = ColorMeter(is_show=True) while True: success, frame = cap.read() res = m.detect_color(frame) print(res) if cv2.waitKey(1) & 0xFF == ord('q'): break

时间: 2023-03-15 15:05:54 浏览: 131
"red": (0, 255, 255), "green": (85, 255, 128), "blue": (170, 255, 128) } 你好!我能够理解你正在询问的是如何使用HSV色彩空间来表示不同的颜色。例如,红色的HSV值为(0,255,255),绿色的HSV值为(85,255,128),蓝色的HSV值为(170,255,128)。
相关问题

import numpy as np class LinearReg(object): def __init__(self, indim=1, outdim=1):

### 回答1: self.indim = indim self.outdim = outdim self.w = np.zeros((indim, outdim))我们可以使用numpy中的“zeros”方法,将LinearReg类中的权重(w)设置为零向量,以表示输入维度和输出维度。 ### 回答2: import numpy as np class LinearReg(object): def __init__(self, indim=1, outdim=1): # 初始化线性回归模型参数 self.w = np.zeros((outdim, indim)) # 初始化权重参数为零行向量 self.b = np.zeros((outdim, 1)) # 初始化偏置参数为零向量 def forward(self, x): # 前向传播 y_pred = np.dot(self.w, x) + self.b return y_pred def loss(self, y_true, y_pred): # 计算损失 loss_val = np.mean((y_true - y_pred)**2) return loss_val def backward(self, x, y_true, y_pred): # 反向传播,更新参数 m = x.shape[1] # 样本数量 dw = (-2 / m) * np.dot((y_true - y_pred), x.T) # 计算权重参数偏导数 db = (-2 / m) * np.sum(y_true - y_pred) # 计算偏置参数偏导数 self.w -= dw # 更新权重参数 self.b -= db # 更新偏置参数 def train(self, x, y_true, epochs=100, learning_rate=0.01): # 训练模型 for epoch in range(epochs): y_pred = self.forward(x) # 前向传播,得到预测值 loss_val = self.loss(y_true, y_pred) # 计算损失 self.backward(x, y_true, y_pred) # 反向传播,更新参数 # 输出当前训练轮次和对应的损失值 print('Epoch: {}/{}, Loss: {}'.format(epoch+1, epochs, loss_val)) def predict(self, x): # 对输入样本进行预测 y_pred = self.forward(x) return y_pred ### 回答3: `import numpy as np` `class LinearReg(object):` 这段代码首先导入了numpy库,并将其命名为np。这个库是用来进行科学计算和数据分析的。然后定义了一个类`LinearReg`。类是一种编程方式,用于封装数据和方法,并可以创建类的实例对象。 `def __init__(self, indim=1, outdim=1):` 这个代码段定义了`LinearReg`类的初始化方法`__init__`。这个方法是在创建类的实例对象时自动调用的。在这个方法中,使用`self`关键字来表示类的实例对象。 `self`参数是用来传入实例对象本身的,类中的其他方法可以通过`self`来访问实例对象的属性和方法。`__init__`方法中的`indim=1`和`outdim=1`是定义了两个参数`indim`和`outdim`的默认值,这两个参数分别表示输入维度和输出维度。 该`LinearReg`类的初始化方法是用来初始化类的实例对象的属性和状态。在这个方法中可以完成一些初始化操作,例如设置默认参数值,创建实例对象的属性等。

#!/usr/bin/env python # -*- coding: utf-8 -*- import cv2 import numpy as np import rospy from sensor_msgs.msg import Image from cv_bridge import CvBridge, CvBridgeError # 定义要识别的颜色范围 lower_color = np.array([19, 78, 44]) upper_color = np.array([74, 202, 129]) # 初始化cv_bridge bridge = CvBridge() # 定义回调函数,处理订阅到的图像 def image_callback(msg): # 将ROS图像格式转换为OpenCV图像格式 try: cv_image = bridge.imgmsg_to_cv2(msg, 'bgr8') except CvBridgeError as e: print(e) return # 转换颜色空间 hsv = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV) # 根据颜色范围进行二值化 mask = cv2.inRange(hsv, lower_color, upper_color) # 寻找轮廓 _, contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # 遍历轮廓 for contour in contours: # 计算轮廓面积 area = cv2.contourArea(contour) # 忽略面积较小的轮廓 if area < 100: continue # 计算轮廓的外接矩形 x, y, w, h = cv2.boundingRect(contour) # 在原图上绘制外接矩形 cv2.rectangle(cv_image, (x, y), (x + w, y + h), (0, 255, 0), 2) # 显示图像 cv2.imshow('frame', cv_image) cv2.waitKey(1) # 初始化节点 rospy.init_node('color_detection') # 订阅摄像头图像 image_sub = rospy.Subscriber('/usb_cam/image_raw', Image, image_callback) # 进入循环 rospy.spin() # 关闭窗口 cv2.destroyAllWindows() 帮我改成检测多种色值的

好的,以下是修改后的代码: ```python #!/usr/bin/env python # -*- coding: utf-8 -*- import cv2 import numpy as np import rospy from sensor_msgs.msg import Image from cv_bridge import CvBridge, CvBridgeError # 定义要识别的颜色范围 colors = { 'red': ([0, 50, 50], [10, 255, 255]), 'green': ([36, 25, 25], [86, 255, 255]), 'blue': ([100, 50, 50], [130, 255, 255]) } # 初始化cv_bridge bridge = CvBridge() # 定义回调函数,处理订阅到的图像 def image_callback(msg): # 将ROS图像格式转换为OpenCV图像格式 try: cv_image = bridge.imgmsg_to_cv2(msg, 'bgr8') except CvBridgeError as e: print(e) return # 转换颜色空间 hsv = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV) # 遍历所有颜色范围,进行二值化和轮廓检测 for color_name, color_range in colors.items(): lower_color = np.array(color_range[0]) upper_color = np.array(color_range[1]) mask = cv2.inRange(hsv, lower_color, upper_color) _, contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # 遍历轮廓,绘制外接矩形 for contour in contours: area = cv2.contourArea(contour) if area < 100: continue x, y, w, h = cv2.boundingRect(contour) cv2.rectangle(cv_image, (x, y), (x + w, y + h), (0, 255, 0), 2) # 显示图像 cv2.imshow('frame', cv_image) cv2.waitKey(1) # 初始化节点 rospy.init_node('color_detection') # 订阅摄像头图像 image_sub = rospy.Subscriber('/usb_cam/image_raw', Image, image_callback) # 进入循环 rospy.spin() # 关闭窗口 cv2.destroyAllWindows() ``` 在上述代码中,我们定义了一个字典 `colors`,其中包含要识别的多种颜色的范围。然后我们遍历所有颜色范围,进行二值化和轮廓检测,并在原图上绘制外接矩形。

相关推荐

import cv2 import numpy as np import torch import torch.nn.functional as F from skimage.segmentation import slic import matplotlib.pyplot as plt from skimage.segmentation import mark_boundaries from skimage import img_as_float # 定义超像素数量 num_segments = 100 # 加载图像 A 和 B img_a = cv2.imread('img_a.jpg') img_b = cv2.imread('img_b.jpg') # 对图像 A 进行超像素分割,并获取每个超像素块的像素范围 segments_a = slic(img_as_float(img_a), n_segments=num_segments, sigma=5) pixel_ranges = [] for i in range(num_segments): mask = (segments_a == i) indices = np.where(mask)[1] pixel_range = (np.min(indices), np.max(indices)) pixel_ranges.append(pixel_range) # 将像素范围应用到图像 B 上实现超像素分割 segments_b = np.zeros_like(segments_a) for i in range(num_segments): pixel_range = pixel_ranges[i] segment_b = img_b[:, pixel_range[0]:pixel_range[1], :] segment_b = torch.from_numpy(segment_b.transpose(2, 0, 1)).unsqueeze(0).float() segment_b = F.interpolate(segment_b, size=(img_b.shape[0], pixel_range[1] - pixel_range[0]), mode='bilinear', align_corners=True) segment_b = segment_b.squeeze(0).numpy().transpose(1, 2, 0).astype(np.uint8) gray = cv2.cvtColor(segment_b, cv2.COLOR_BGR2GRAY) _, mask = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY) segments_b[np.where(mask)] = i # 可视化超像素分割结果 fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 2, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(img_a, cv2.COLOR_BGR2RGB)), segments_a)) ax = fig.add_subplot(1, 2, 2) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(img_b, cv2.COLOR_BGR2RGB)), segments_b)) plt.axis("off") plt.show(),上述代码中segments_a = slic(img_as_float(img_a), n_segments=num_segments, sigma=5)出现错误:ValueError: Cannot convert from object to float64.

import cv2 import numpy as np import os # 提取图像的HOG特征 def get_hog_features(image): hog = cv2.HOGDescriptor() hog_features = hog.compute(image) return hog_features # 加载训练数据集 train_data = [r"I:\18Breakageratecalculation\SVM run\detection_cut\whole\train128"] train_labels = [r"I:\18Breakageratecalculation\SVM run\detection_cut\whole\train128\labels.txt"] num_samples = 681 for i in range(num_samples): img = cv2.imread(str(i).zfill(3)+'.jpg') hog_features = get_hog_features(image) hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) color_hist = cv2.calcHist([hsv_image], [0, 1], None, [180, 256], [0, 180, 0, 256]) color_features = cv2.normalize(color_hist, color_hist).flatten() train_data.append(hog_features) train_labels.append(labels[i]) # 训练SVM模型 svm = cv2.ml.SVM_create() svm.setType(cv2.ml.SVM_C_SVC) svm.setKernel(cv2.ml.SVM_LINEAR) svm.train(np.array(train_data), cv2.ml.ROW_SAMPLE, np.array(train_labels)) # 对测试图像进行分类 test_image = cv2.imread('I:\18Breakageratecalculation\mask-slic use\maskSLIC-master\result\split\result2\maskslic2_roi.png', 0) test_features = get_hog_features(test_image) result = svm.predict(test_features.reshape(1,-1)) # 显示分割结果 result_image = np.zeros(test_image.shape, np.uint8) for i in range(test_image.shape[0]): for j in range(test_image.shape[1]): if result[i,j] == 1: result_image[i,j] = 255 cv2.imshow('I:\18Breakageratecalculation\mask-slic use\maskSLIC-master\result\split\result2\Result.png', result_image) cv2.waitKey(0) cv2.destroyAllWindows()

最新推荐

recommend-type

野狗优化算法DOA MATLAB源码, 应用案例为函数极值求解以及优化svm进行分类,代码注释详细,可结合自身需求进行应用

野狗优化算法DOA MATLAB源码, 应用案例为函数极值求解以及优化svm进行分类,代码注释详细,可结合自身需求进行应用
recommend-type

2107381120 王孟丽 实验2 (1).docx

2107381120 王孟丽 实验2 (1).docx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码的作用是随机生成一个浮点数,范围在 a 和 b 之间(包括 a 和 b)。 其中,`rand()` 函数是 C 语言标准库中的一个函数,用于生成一个伪随机整数。`RAND_MAX` 是一个常量,它表示 `rand()` 函数生成的随机数的最大值。 因此,`(double)rand() / RAND_MAX` 表示生成的随机数在 [0, 1] 之间的浮点数。 然后,将这个随机数乘上 `(a - b) - fabs(a - b)`,再加上 `fabs(a - b)`。 `fabs(a - b)` 是 C 语言标准库中的一个函数,用于计算一个数的绝对值。因此,`fabs(a - b)