import numpy as np import tensorflow as tf import tflearn GAMMA = 0.99 A_DIM = 3 ENTROPY_WEIGHT = 4 ENTROPY_EPS = 1e-6 S_INFO = 4这段代码是什么意思
时间: 2024-05-31 17:11:12 浏览: 127
这段代码定义了一些常量和导入了一些Python库。具体含义如下:
- `import numpy as np`: 导入NumPy库,并将其别名设置为`np`,以便在代码中更方便地使用NumPy中的函数和类。
- `import tensorflow as tf`: 导入TensorFlow库,以便在代码中使用TensorFlow中的函数和类。
- `import tflearn`: 导入tflearn库,是一个用于构建和训练深度学习模型的高级API。
常量的含义如下:
- `GAMMA = 0.99`: 强化学习中的折扣率,表示未来奖励的折扣因子,取值在0到1之间。
- `A_DIM = 3`: 离散动作空间的维度,表示底层智能体可以采取的离散动作的数量。
- `ENTROPY_WEIGHT = 4`: 策略网络中熵的权重系数,用于平衡探索和利用。
- `ENTROPY_EPS = 1e-6`: 策略网络中熵的截断值,防止熵过大导致训练不稳定。
- `S_INFO = 4`: 状态空间的维度,表示底层智能体可以观测到的状态的数量。
相关问题
请采用python以Tensorflow为架构编写《Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor》版本的SAC强化学习算法代码
以下是基于Tensorflow的《Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor》版本的SAC强化学习算法的Python代码:
```python
import tensorflow as tf
import numpy as np
import gym
# Create actor network
class Actor(tf.keras.Model):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.layer1 = tf.keras.layers.Dense(256, activation='relu')
self.layer2 = tf.keras.layers.Dense(256, activation='relu')
self.mu_layer = tf.keras.layers.Dense(action_dim, activation='tanh')
self.sigma_layer = tf.keras.layers.Dense(action_dim, activation='softplus')
self.max_action = max_action
def call(self, state):
x = self.layer1(state)
x = self.layer2(x)
mu = self.mu_layer(x) * self.max_action
sigma = self.sigma_layer(x) + 1e-4
return mu, sigma
# Create two critic networks
class Critic(tf.keras.Model):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.layer1 = tf.keras.layers.Dense(256, activation='relu')
self.layer2 = tf.keras.layers.Dense(256, activation='relu')
self.layer3 = tf.keras.layers.Dense(1, activation=None)
def call(self, state, action):
x = tf.concat([state, action], axis=1)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
return x
# Create Soft Actor-Critic (SAC) Agent
class SACAgent:
def __init__(self, state_dim, action_dim, max_action):
self.actor = Actor(state_dim, action_dim, max_action)
self.critic1 = Critic(state_dim, action_dim)
self.critic2 = Critic(state_dim, action_dim)
self.target_critic1 = Critic(state_dim, action_dim)
self.target_critic2 = Critic(state_dim, action_dim)
self.max_action = max_action
self.alpha = tf.Variable(0.1, dtype=tf.float32, name='alpha')
self.gamma = 0.99
self.tau = 0.005
self.optimizer_actor = tf.keras.optimizers.Adam(learning_rate=3e-4)
self.optimizer_critic1 = tf.keras.optimizers.Adam(learning_rate=3e-4)
self.optimizer_critic2 = tf.keras.optimizers.Adam(learning_rate=3e-4)
def get_action(self, state):
state = np.expand_dims(state, axis=0)
mu, sigma = self.actor(state)
dist = tfp.distributions.Normal(mu, sigma)
action = tf.squeeze(dist.sample(1), axis=0)
return action.numpy()
def update(self, replay_buffer, batch_size):
states, actions, rewards, next_states, dones = replay_buffer.sample(batch_size)
with tf.GradientTape(persistent=True) as tape:
# Compute actor loss
mu, sigma = self.actor(states)
dist = tfp.distributions.Normal(mu, sigma)
log_pi = dist.log_prob(actions)
q1 = self.critic1(states, actions)
q2 = self.critic2(states, actions)
q_min = tf.minimum(q1, q2)
alpha_loss = -tf.reduce_mean(self.alpha * (log_pi + self.target_entropy))
actor_loss = -tf.reduce_mean(tf.exp(self.alpha) * log_pi * q_min)
# Compute critic loss
next_mu, next_sigma = self.actor(next_states)
next_dist = tfp.distributions.Normal(next_mu, next_sigma)
next_actions = tf.clip_by_value(next_dist.sample(1), -self.max_action, self.max_action)
target_q1 = self.target_critic1(next_states, next_actions)
target_q2 = self.target_critic2(next_states, next_actions)
target_q = tf.minimum(target_q1, target_q2)
target_q = rewards + self.gamma * (1.0 - dones) * (target_q - tf.exp(self.alpha) * next_dist.entropy())
q1_loss = tf.reduce_mean(tf.square(q1 - target_q))
q2_loss = tf.reduce_mean(tf.square(q2 - target_q))
critic_loss = q1_loss + q2_loss + alpha_loss
# Compute gradients and update weights
actor_grads = tape.gradient(actor_loss, self.actor.trainable_variables)
critic1_grads = tape.gradient(critic_loss, self.critic1.trainable_variables)
critic2_grads = tape.gradient(critic_loss, self.critic2.trainable_variables)
self.optimizer_actor.apply_gradients(zip(actor_grads, self.actor.trainable_variables))
self.optimizer_critic1.apply_gradients(zip(critic1_grads, self.critic1.trainable_variables))
self.optimizer_critic2.apply_gradients(zip(critic2_grads, self.critic2.trainable_variables))
# Update target networks
for w, w_target in zip(self.critic1.weights, self.target_critic1.weights):
w_target.assign(self.tau * w + (1 - self.tau) * w_target)
for w, w_target in zip(self.critic2.weights, self.target_critic2.weights):
w_target.assign(self.tau * w + (1 - self.tau) * w_target)
# Update alpha
alpha_grad = tape.gradient(alpha_loss, self.alpha)
self.alpha.assign_add(1e-4 * alpha_grad)
def save(self, filename):
self.actor.save_weights(filename + '_actor')
self.critic1.save_weights(filename + '_critic1')
self.critic2.save_weights(filename + '_critic2')
def load(self, filename):
self.actor.load_weights(filename + '_actor')
self.critic1.load_weights(filename + '_critic1')
self.critic2.load_weights(filename + '_critic2')
# Create replay buffer
class ReplayBuffer:
def __init__(self, max_size):
self.max_size = max_size
self.buffer = []
self.position = 0
def add(self, state, action, reward, next_state, done):
if len(self.buffer) < self.max_size:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.max_size
def sample(self, batch_size):
indices = np.random.choice(len(self.buffer), batch_size, replace=False)
states, actions, rewards, next_states, dones = [], [], [], [], []
for idx in indices:
state, action, reward, next_state, done = self.buffer[idx]
states.append(np.array(state, copy=False))
actions.append(np.array(action, copy=False))
rewards.append(reward)
next_states.append(np.array(next_state, copy=False))
dones.append(done)
return np.array(states), np.array(actions), np.array(rewards, dtype=np.float32), np.array(next_states), np.array(dones, dtype=np.uint8)
# Create environment and agent
env = gym.make('Pendulum-v0')
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
agent = SACAgent(state_dim, action_dim, max_action)
replay_buffer = ReplayBuffer(1000000)
# Train agent
max_episodes = 1000
max_steps = 500
batch_size = 256
update_interval = 1
target_entropy = -action_dim
for episode in range(max_episodes):
state = env.reset()
total_reward = 0
for step in range(max_steps):
action = agent.get_action(state)
next_state, reward, done, _ = env.step(action)
replay_buffer.add(state, action, reward, next_state, done)
if len(replay_buffer.buffer) > batch_size:
agent.update(replay_buffer, batch_size)
state = next_state
total_reward += reward
if done:
break
print("Episode:", episode, "Total Reward:", total_reward)
```
请注意,以上代码仅供参考,并且需要根据具体环境和参数进行调整和完善。
请用python以Tensorflow为架构编写一个以这篇论文《Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor》依据的SAC强化学习完整代码
很抱歉,我并不是一个能够直接编写代码的AI,但我可以提供一些参考资料和指导。
首先,你需要了解SAC算法的原理和实现细节,建议先阅读一遍论文并理解其中的数学公式和推导过程。接着,你需要熟悉TensorFlow的使用方法,包括搭建神经网络、定义损失函数、优化器等等。
在开始编写代码之前,你需要准备好SAC算法所需的环境和数据集,包括强化学习环境和训练数据。可以选择使用OpenAI Gym等开源强化学习库或自己构建环境。对于数据集,可以使用Replay Buffer等经典技术进行采样和存储。
下面是一个简化版的SAC算法的TensorFlow实现代码,仅供参考:
```python
import tensorflow as tf
import numpy as np
# 定义神经网络
class Critic(tf.keras.Model):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.state_layer = tf.keras.layers.Dense(64, activation='relu')
self.action_layer = tf.keras.layers.Dense(64, activation='relu')
self.concat_layer = tf.keras.layers.Concatenate()
self.q_layer = tf.keras.layers.Dense(1, activation=None)
def call(self, inputs):
state, action = inputs
state = self.state_layer(state)
action = self.action_layer(action)
inputs = self.concat_layer([state, action])
q_value = self.q_layer(inputs)
return q_value
class Actor(tf.keras.Model):
def __init__(self, state_dim, action_dim):
super(Actor, self).__init__()
self.state_layer = tf.keras.layers.Dense(64, activation='relu')
self.mean_layer = tf.keras.layers.Dense(action_dim, activation=None)
self.std_layer = tf.keras.layers.Dense(action_dim, activation=None)
def call(self, inputs):
state = self.state_layer(inputs)
mean = self.mean_layer(state)
std = tf.exp(self.std_layer(state))
dist = tfp.distributions.Normal(mean, std)
action = dist.sample()
return action
# 定义SAC算法
class SACAgent:
def __init__(self, state_dim, action_dim, gamma=0.99, alpha=0.2, tau=0.005):
self.gamma = gamma
self.alpha = alpha
self.tau = tau
self.actor = Actor(state_dim, action_dim)
self.critic1 = Critic(state_dim, action_dim)
self.critic2 = Critic(state_dim, action_dim)
self.target_critic1 = Critic(state_dim, action_dim)
self.target_critic2 = Critic(state_dim, action_dim)
self.actor_optimizer = tf.keras.optimizers.Adam(learning_rate=3e-4)
self.critic_optimizer = tf.keras.optimizers.Adam(learning_rate=3e-4)
self.update_target_networks()
def update_target_networks(self):
self.target_critic1.set_weights(self.critic1.get_weights())
self.target_critic2.set_weights(self.critic2.get_weights())
def get_action(self, state):
state = tf.expand_dims(tf.convert_to_tensor(state), 0)
action = self.actor(state)
return action.numpy()[0]
def train(self, state_batch, action_batch, reward_batch, next_state_batch, done_batch):
state_batch = tf.convert_to_tensor(state_batch, dtype=tf.float32)
action_batch = tf.convert_to_tensor(action_batch, dtype=tf.float32)
reward_batch = tf.convert_to_tensor(reward_batch, dtype=tf.float32)
next_state_batch = tf.convert_to_tensor(next_state_batch, dtype=tf.float32)
done_batch = tf.convert_to_tensor(done_batch, dtype=tf.float32)
next_action_batch = self.actor(next_state_batch)
next_q1_batch = self.target_critic1([next_state_batch, next_action_batch])
next_q2_batch = self.target_critic2([next_state_batch, next_action_batch])
next_q_batch = tf.minimum(next_q1_batch, next_q2_batch)
target_q_batch = reward_batch + self.gamma * (1 - done_batch) * (next_q_batch - self.alpha * tf.math.log(next_action_batch.prob(action_batch) + 1e-8))
with tf.GradientTape() as tape:
q1_batch = self.critic1([state_batch, action_batch])
critic1_loss = tf.reduce_mean(tf.square(q1_batch - target_q_batch))
critic1_grads = tape.gradient(critic1_loss, self.critic1.trainable_variables)
self.critic_optimizer.apply_gradients(zip(critic1_grads, self.critic1.trainable_variables))
with tf.GradientTape() as tape:
q2_batch = self.critic2([state_batch, action_batch])
critic2_loss = tf.reduce_mean(tf.square(q2_batch - target_q_batch))
critic2_grads = tape.gradient(critic2_loss, self.critic2.trainable_variables)
self.critic_optimizer.apply_gradients(zip(critic2_grads, self.critic2.trainable_variables))
with tf.GradientTape() as tape:
new_action_batch = self.actor(state_batch)
new_q1_batch = self.critic1([state_batch, new_action_batch])
actor_loss = tf.reduce_mean(self.alpha * tf.math.log(new_action_batch.prob(new_action_batch) + 1e-8) - new_q1_batch)
actor_grads = tape.gradient(actor_loss, self.actor.trainable_variables)
self.actor_optimizer.apply_gradients(zip(actor_grads, self.actor.trainable_variables))
self.update_target_networks()
# 训练SAC算法
env = gym.make('Pendulum-v0')
agent = SACAgent(env.observation_space.shape[0], env.action_space.shape[0])
replay_buffer = []
for episode in range(1000):
state = env.reset()
done = False
total_reward = 0
while not done:
action = agent.get_action(state)
next_state, reward, done, _ = env.step(action)
replay_buffer.append((state, action, reward, next_state, done))
state = next_state
total_reward += reward
if len(replay_buffer) > 128:
batch = random.sample(replay_buffer, 128)
state_batch, action_batch, reward_batch, next_state_batch, done_batch = map(np.array, zip(*batch))
agent.train(state_batch, action_batch, reward_batch, next_state_batch, done_batch)
print('Episode:', episode, 'Total reward:', total_reward)
```
请注意,此代码仅为简化版的SAC算法实现,只包含基本的神经网络定义、损失函数和优化器,还需要根据具体情况进行调整和优化,例如添加正则化、批归一化等技术,以提高算法的性能和稳定性。此外,还需要考虑如何处理连续动作空间、离散动作空间等不同情况,以及如何设置超参数等问题。
阅读全文