写一个基于tensorflow2.0的A3C强化学习算法python程序
时间: 2024-05-02 22:23:06 浏览: 184
好的,这是您的第一个问题。以下是基于Tensorflow 2.0的A3C强化学习算法的Python程序:
```
import tensorflow as tf
import numpy as np
import gym
# 设置超参数
learning_rate = 0.0001
gamma = 0.99
n_workers = 8 # 线程数
n_steps = 5 # n步奖励
batch_size = n_workers * n_steps
n_episodes = 10000
# 定义Actor-Critic模型
class ActorCritic(tf.keras.Model):
def __init__(self):
super(ActorCritic, self).__init__()
self.dense1 = tf.keras.layers.Dense(128, activation='relu')
self.policy_logits = tf.keras.layers.Dense(2)
self.dense2 = tf.keras.layers.Dense(128, activation='relu')
self.values = tf.keras.layers.Dense(1)
def call(self, inputs):
x = self.dense1(inputs)
logits = self.policy_logits(x)
v_preds = self.values(self.dense2(x))
return logits, v_preds
env = gym.make('CartPole-v0')
model = ActorCritic()
optimizer = tf.keras.optimizers.Adam(learning_rate)
# 用于计算n步奖励的函数
def get_n_step_rewards(rewards, v_preds, done):
n = len(rewards)
rewards = rewards + [0.0] * (n_steps - (n % n_steps))
if not done:
_, last_v_pred = model(tf.constant([env.reset()], dtype=tf.float32))
v_preds = v_preds + [last_v_pred.numpy()[0]]
n_step_rs = []
for i in range(0, n, n_steps):
V = sum(n_steps_rs * gamma**np.arange(len(n_steps_rs)))
n_step_rs += [V] * n_steps_rs
return np.array(n_step_rs)
# 开始训练
for episode in range(n_episodes):
states = np.zeros((batch_size, 4))
actions = np.zeros((batch_size,))
rewards = np.zeros((batch_size,))
v_preds = np.zeros((batch_size,))
next_states = np.zeros((batch_size, 4))
dones = np.zeros((batch_size,))
s = env.reset()
for i in range(batch_size):
states[i] = s
logits, v_pred = model(tf.constant([s], dtype=tf.float32))
a = tf.squeeze(tf.random.categorical(logits, 1)).numpy()[0]
s_, r, done, _ = env.step(a)
actions[i] = a
rewards[i] = r
v_preds[i] = v_pred.numpy()[0]
next_states[i] = s_
dones[i] = done
if done:
s = env.reset()
else:
s = s_
n_step_rs = get_n_step_rewards(rewards, v_preds, done)
with tf.GradientTape() as tape:
logits, v_preds = model(tf.constant(states, dtype=tf.float32))
log_probs = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=actions)
advantage = tf.constant(n_step_rs, dtype=tf.float32) - v_preds
critic_loss = tf.reduce_mean(tf.square(advantage))
actor_loss = tf.reduce_mean(log_probs * tf.stop_gradient(advantage))
entropy_loss = tf.reduce_mean(tf.nn.softmax(logits) * tf.nn.log_softmax(logits))
total_loss = actor_loss + 0.5 * critic_loss - 0.01 * entropy_loss
grads = tape.gradient(total_loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
print('Episode: {} \t\t Avg Reward: {}'.format(episode, np.mean(rewards)))
```
希望这个Python程序可以对您有所帮助。如果您有其他问题,请随时问我。
阅读全文