hsv = cv2.cvtColor(src, cv2.COLOR_BGR2HSV) low_hsv = np.array([0,43,46]) high_hsv = np.array([10,255,255])
时间: 2024-04-10 17:30:04 浏览: 97
你好!你给出的代码是使用OpenCV库将BGR图像转换为HSV颜色空间,并定义了一个HSV范围。这个范围是用于在图像中找到特定颜色的像素。
具体来说,这段代码的作用是:
1. 使用cv2.cvtColor函数将名为src的BGR图像转换为HSV颜色空间,并将结果存储在名为hsv的变量中。
2. 定义了一个名为low_hsv的numpy数组,其中包含HSV颜色空间中的最低取值,即[0, 43, 46]。
3. 定义了一个名为high_hsv的numpy数组,其中包含HSV颜色空间中的最高取值,即[10, 255, 255]。
这个HSV范围的目的是用于在图像中提取HSV值在指定范围内的像素。这个范围可以根据具体的应用需求进行调整。
相关问题
import cv2import numpy as npfrom matplotlib import pyplot as plt # 读取图片并转为灰度图像img = cv2.imread("image.jpg", 0) # 计算灰度直方图hist = cv2.calcHist([img], [0], None, [256], [0, 256]) # 显示灰度直方图plt.hist(img.ravel(), 256, [0, 256])plt.show() # 计算二维直方图hsv = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)hist2d = cv2.calcHist([hsv], [0, 1], None, [180, 256], [0, 180, 0, 256]) # 显示二维直方图plt.imshow(hist2d, interpolation="nearest")plt.show()
这段代码是用Python中的OpenCV库来计算和显示图片的灰度直方图和二维直方图。首先,使用cv2.imread()函数读取一张图片并转为灰度图像。然后,使用cv2.calcHist()函数计算灰度直方图和二维直方图。最后,使用matplotlib库中的plt.hist()函数和plt.imshow()函数分别显示灰度直方图和二维直方图。其中,灰度直方图使用一维的256个bin来表示灰度级别的分布情况,而二维直方图则使用180个bin表示色调(hue)的分布情况,256个bin表示饱和度(saturation)的分布情况。
import numpy as np import cv2 class ColorMeter(object): color_hsv = { # HSV,H表示色调(度数表示0-180),S表示饱和度(取值0-255),V表示亮度(取值0-255) # "orange": [np.array([11, 115, 70]), np.array([25, 255, 245])], "yellow": [np.array([11, 115, 70]), np.array([34, 255, 245])], "green": [np.array([35, 115, 70]), np.array([77, 255, 245])], "lightblue": [np.array([78, 115, 70]), np.array([99, 255, 245])], "blue": [np.array([100, 115, 70]), np.array([124, 255, 245])], "purple": [np.array([125, 115, 70]), np.array([155, 255, 245])], "red": [np.array([156, 115, 70]), np.array([179, 255, 245])], } def __init__(self, is_show=False): self.is_show = is_show self.img_shape = None def detect_color(self, frame): self.img_shape = frame.shape res = {} # 将图像转化为HSV格式 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) for text, range_ in self.color_hsv.items(): # 去除颜色范围外的其余颜色 mask = cv2.inRange(hsv, range_[0], range_[1]) erosion = cv2.erode(mask, np.ones((1, 1), np.uint8), iterations=2) dilation = cv2.dilate(erosion, np.ones((1, 1), np.uint8), iterations=2) target = cv2.bitwise_and(frame, frame, mask=dilation) # 将滤波后的图像变成二值图像放在binary中 ret, binary = cv2.threshold(dilation, 127, 255, cv2.THRESH_BINARY) # 在binary中发现轮廓,轮廓按照面积从小到大排列 contours, hierarchy = cv2.findContours( binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) if len(contours) > 0: # cv2.boundingRect()返回轮廓矩阵的坐标值,四个值为x, y, w, h, 其中x, y为左上角坐标,w,h为矩阵的宽和高 boxes = [ box for box in [cv2.boundingRect(c) for c in contours] if min(frame.shape[0], frame.shape[1]) / 10 < min(box[2], box[3]) < min(frame.shape[0], frame.shape[1]) / 1 ] if boxes: res[text] = boxes if self.is_show: for box in boxes: x, y, w, h = box # 绘制矩形框对轮廓进行定位 cv2.rectangle( frame, (x, y), (x + w, y + h), (153, 153, 0), 2 ) # 将绘制的图像保存并展示 # cv2.imwrite(save_image, img) cv2.putText( frame, # image text, # text (x, y), # literal direction cv2.FONT_HERSHEY_SIMPLEX, # dot font 0.9, # scale (255, 255, 0), # color 2, # border ) if self.is_show: cv2.imshow("image", frame) cv2.waitKey(1) # cv2.destroyAllWindows() return res if __name__ == "__main__": cap = cv2.VideoCapture(0) m = ColorMeter(is_show=True) while True: success, frame = cap.read() res = m.detect_color(frame) print(res) if cv2.waitKey(1) & 0xFF == ord('q'): break
"red": (0, 255, 255),
"green": (85, 255, 128),
"blue": (170, 255, 128) } 你好!我能够理解你正在询问的是如何使用HSV色彩空间来表示不同的颜色。例如,红色的HSV值为(0,255,255),绿色的HSV值为(85,255,128),蓝色的HSV值为(170,255,128)。
阅读全文