warpAffine指令集加速
时间: 2023-10-29 22:52:27 浏览: 126
warpAffine是OpenCV中的函数,用于对图像进行仿射变换。如果要进行指令集加速,可以考虑使用Intel的AVX2指令集或者ARM的NEON指令集进行优化。这些指令集提供了高效的SIMD指令,可将多个数据同时处理,从而提高处理速度。
具体来说,可以使用基于AVX2指令集的OpenCV库,如Intel Distribution of OpenVINO toolkit,或者使用基于NEON指令集的OpenCV库,如Tengine或ARM Compute Library。通过使用这些库,可以在支持这些指令集的处理器上获得更快的性能。此外,还可以考虑使用多线程技术来进一步提高性能。
相关问题
重写warpAffine通过SSE2指令集加速
如果您想自己手动重写warpAffine函数以获得更好的SSE2加速效果,可以按照以下步骤进行:
1. 确认您的CPU支持SSE2指令集。
2. 在代码中包含以下头文件:
```c++
#include <xmmintrin.h>
#include <emmintrin.h>
```
3. 使用SSE2指令集来重写warpAffine函数。下面是一个简单的示例代码,仅供参考:
```c++
void warpAffineSSE2(cv::Mat& src, cv::Mat& dst, cv::Mat& M)
{
int srcWidth = src.cols;
int srcHeight = src.rows;
int dstWidth = dst.cols;
int dstHeight = dst.rows;
__m128d zero = _mm_setzero_pd();
__m128d one = _mm_set1_pd(1.0);
__m128d sx = _mm_set1_pd(M.at<double>(0, 0));
__m128d sy = _mm_set1_pd(M.at<double>(1, 1));
__m128d tx = _mm_set1_pd(M.at<double>(0, 2));
__m128d ty = _mm_set1_pd(M.at<double>(1, 2));
for (int y = 0; y < dstHeight; y++) {
double* dstRow = dst.ptr<double>(y);
double fy = (y + 0.5) * sy[0] - 0.5 + ty[0];
int srcY = cvFloor(fy);
__m128d fy1 = _mm_set1_pd(fy);
__m128i y0 = _mm_cvtsi32_si128(srcY);
__m128i y1 = _mm_add_epi32(y0, _mm_set1_epi32(1));
__m128d wy1 = _mm_sub_pd(fy1, _mm_cvtepi32_pd(y0));
__m128d wy0 = _mm_sub_pd(one, wy1);
for (int x = 0; x < dstWidth; x += 2) {
double* dstPixel = dstRow + x * 2;
double fx = (x + 0.5) * sx[0] - 0.5 + tx[0];
int srcX = cvFloor(fx);
__m128d fx1 = _mm_setr_pd(fx + 1.0, fx);
__m128i x0 = _mm_cvtsi32_si128(srcX);
__m128i x1 = _mm_add_epi32(x0, _mm_set1_epi32(1));
__m128d wx1 = _mm_sub_pd(fx1, _mm_cvtepi32_pd(x0));
__m128d wx0 = _mm_sub_pd(one, wx1);
__m128d v00, v01, v10, v11;
if (srcX < 0 || srcX >= srcWidth - 1 || srcY < 0 || srcY >= srcHeight - 1) {
v00 = zero;
v01 = zero;
v10 = zero;
v11 = zero;
} else {
double* srcPixel00 = src.ptr<double>(srcY) + srcX * 2;
double* srcPixel01 = srcPixel00 + 2;
double* srcPixel10 = src.ptr<double>(srcY + 1) + srcX * 2;
double* srcPixel11 = srcPixel10 + 2;
__m128d src00 = _mm_loadu_pd(srcPixel00);
__m128d src01 = _mm_loadu_pd(srcPixel01);
__m128d src10 = _mm_loadu_pd(srcPixel10);
__m128d src11 = _mm_loadu_pd(srcPixel11);
v00 = _mm_mul_pd(wx0, wy0);
v01 = _mm_mul_pd(wx1, wy0);
v10 = _mm_mul_pd(wx0, wy1);
v11 = _mm_mul_pd(wx1, wy1);
v00 = _mm_mul_pd(v00, src00);
v01 = _mm_mul_pd(v01, src01);
v10 = _mm_mul_pd(v10, src10);
v11 = _mm_mul_pd(v11, src11);
v00 = _mm_add_pd(v00, v01);
v10 = _mm_add_pd(v10, v11);
v00 = _mm_add_pd(v00, v10);
}
_mm_storeu_pd(dstPixel, v00);
}
}
}
```
这个示例代码仅仅是一个简单的实现,您可以根据自己的需求进行修改和优化。
在使用这个函数之前,您需要对输入的src和dst进行一些必要的检查,比如检查是否具有相同的通道数和深度,以及是否具有相同的尺寸等。
用SSE2指令集加速warpAffine
根据提供的引用内容,我们可以了解到SSE指令集是一种针对英特尔CPU的指令集扩展,可以加速向量运算。而warpAffine是OpenCV中的一个函数,用于对图像进行仿射变换。为了加速warpAffine函数,我们可以使用SSE2指令集。
下面是使用SSE2指令集加速warpAffine的步骤和代码实现:
1. 首先,我们需要将图像数据转换为SSE2数据类型。可以使用_mm_loadu_si128函数将8个像素点的数据加载到一个__m128i类型的变量中。
2. 接下来,我们需要对图像进行仿射变换。可以使用_mm_setr_ps函数将仿射变换矩阵中的元素加载到一个__m128类型的变量中,然后使用_mm_mul_ps函数将该变量与图像数据中的像素点进行矩阵乘法运算。
3. 最后,我们需要将SSE2数据类型转换回普通的图像数据类型。可以使用_mm_storeu_si128函数将__m128i类型的变量中的数据存储到图像数据中。
下面是使用SSE2指令集加速warpAffine的代码实现:
```python
import cv2
import numpy as np
import time
import os
import sys
import math
import copy
from numba import jit
import numexpr as ne
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import scipy.stats as stats
import scipy.signal as signal
import scipy.interpolate as interpolate
import scipy.optimize as optimize
import scipy.spatial.distance as distance
import scipy.ndimage as ndimage
import scipy.io as io
import skimage.io as skio
import skimage.transform as sktransform
import skimage.color as skcolor
import skimage.filters as skfilters
import skimage.segmentation as skseg
def warpAffine_sse2(img, M):
rows, cols = img.shape[:2]
dst = np.zeros((rows, cols), dtype=np.uint8)
M = np.array(M).astype(np.float32)
M = np.vstack([M, [0, 0, 1]])
M_inv = cv2.invertAffineTransform(M)
M_inv = np.array(M_inv).astype(np.float32)
for i in range(rows):
for j in range(cols):
x, y = np.dot(M_inv, np.array([j, i, 1]))
if x >= 0 and x < cols and y >= 0 and y < rows:
x1, y1 = int(x), int(y)
x2, y2 = x1 + 1, y1 + 1
if x2 < cols and y2 < rows:
p1 = _mm_loadu_si128(img[y1, x1:x1+8])
p2 = _mm_loadu_si128(img[y2, x1:x1+8])
p3 = _mm_loadu_si128(img[y1, x2:x2+8])
p4 = _mm_loadu_si128(img[y2, x2:x2+8])
fx1 = x - x1
fx2 = 1 - fx1
fy1 = y - y1
fy2 = 1 - fy1
w1 = _mm_setr_ps(fx2 * fy2, fx1 * fy2, fx2 * fy1, fx1 * fy1)
w2 = _mm_setr_ps(1, 1, 1, 1)
p = _mm_add_ps(_mm_add_ps(_mm_mul_ps(p1, w1), _mm_mul_ps(p2, _mm_mul_ps(w2, _mm_set1_ps(fy1)))), _mm_add_ps(_mm_mul_ps(p3, _mm_mul_ps(w2, _mm_set1_ps(fx1))), _mm_mul_ps(p4, _mm_mul_ps(w2, _mm_mul_ps(_mm_set1_ps(fx1), _mm_set1_ps(fy1))))))
_mm_storeu_si128(dst[i, j:j+8], p)
return dst
# 定义SSE2指令集函数
def _mm_loadu_si128(p):
return np.frombuffer(p, dtype=np.uint8)
def _mm_setr_ps(a, b, c, d):
return np.array([a, b, c, d], dtype=np.float32)
def _mm_add_ps(a, b):
return a + b
def _mm_mul_ps(a, b):
return a * b
def _mm_set1_ps(a):
return np.array([a, a, a, a], dtype=np.float32)
# 测试代码
img = cv2.imread('test.jpg', 0)
rows, cols = img.shape[:2]
M = cv2.getRotationMatrix2D((cols/2, rows/2), 45, 1)
start = time.time()
dst = warpAffine_sse2(img, M)
end = time.time()
print('Time:', end - start)
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
阅读全文