曲面展开算法python
时间: 2023-07-10 20:29:17 浏览: 455
曲面展开算法是将三维曲面展开成二维平面的过程,通常用于制作纸质模型或者将模型导出到CAD软件进行后续处理。下面给出一个基于Python的曲面展开算法的示例代码:
```python
import numpy as np
def flatten_mesh(vertices, faces):
# 计算每个三角面片的法向量
normals = np.cross(vertices[faces[:, 1]] - vertices[faces[:, 0]], vertices[faces[:, 2]] - vertices[faces[:, 0]])
norms = np.linalg.norm(normals, axis=1)
normals /= norms[:, np.newaxis]
# 计算每个顶点的曲面坐标
coords = np.zeros_like(vertices)
for i in range(len(vertices)):
for j in range(len(faces)):
if i in faces[j]:
p0, p1, p2 = vertices[faces[j]]
n = normals[j]
v = vertices[i]
coords[i] = np.array([np.dot(v-p0, np.cross(p1-p0, n)), np.dot(v-p0, np.cross(n, p2-p0))])
break
# 计算每个三角形的重心
centroids = (vertices[faces[:, 0]] + vertices[faces[:, 1]] + vertices[faces[:, 2]]) / 3
# 将每个三角形展开成平行四边形
flattened_faces = []
for i in range(len(faces)):
# 计算每个顶点的展开坐标
a, b, c = coords[faces[i]]
A, B, C = coords[faces[i]] - np.array([a, b])
P0, P1, P2 = centroids[i], centroids[i] + A, centroids[i] + B
Q = centroids[i] + A + B
B_ = np.array([np.dot(P1-P0, B) / np.dot(B, B), np.dot(P2-P0, B) / np.dot(B, B)])
A_ = np.array([np.dot(Q-P0, A) / np.dot(A, A), np.dot(P2-Q, A) / np.dot(A, A)])
# 将三角形展开成平行四边形
flattened_faces.append([i*3+0, i*3+1, i*3+2, i*3+0])
flattened_faces.append([i*3+0, i*3+2, i*3+4, i*3+3, i*3+0])
flattened_faces.append([i*3+0, i*3+3, i*3+5, i*3+1, i*3+0])
flattened_faces.append([i*3+1, i*3+5, i*3+4, i*3+2, i*3+1])
# 将每个顶点的展开坐标保存到vertices中
vertices[faces[i]] = np.array([a + B_[0]*A + A_[0]*B, b + B_[1]*A + A_[1]*B])
return vertices, np.array(flattened_faces)
```
其中,vertices和faces分别是三维网格模型的顶点和三角面片索引,函数返回的是展开后的顶点和面片。具体实现过程可以参考算法原理,这里不再赘述。
阅读全文