决策树之python实现C4.5算法

时间: 2023-09-28 21:11:14 浏览: 139
C4.5算法是一种决策树算法,其主要特点是可以处理连续型和离散型的属性,并且能够自动地进行特征选择。下面是用Python实现C4.5算法的步骤: 1. 数据预处理 首先需要将数据集处理成合适的格式,通常将数据集表示成一个二维数组或DataFrame的形式,其中每一行表示一个样本,每一列表示一个特征。如果数据集中存在缺失值,需要进行处理,通常可以使用均值、中位数或众数等方法来填充缺失值。 2. 特征选择 C4.5算法使用信息增益比来选择最佳的特征。信息增益的定义为:样本集合的熵减去在特定特征条件下样本集合的条件熵,即: $Gain(A) = Ent(D) - Ent(D|A)$ 其中,$A$ 表示一个特征,$D$ 表示样本集合,$Ent(D)$ 表示样本集合的熵,$Ent(D|A)$ 表示在特定特征条件下样本集合的条件熵。 信息增益比定义为信息增益除以特征的固有值,即: $Gain\_ratio(A) = \frac{Gain(A)}{IV(A)}$ 其中,$IV(A)$ 表示特征 $A$ 的固有值,计算公式为: $IV(A) = -\sum_{i=1}^{n}\frac{|D_i|}{|D|}\log_2\frac{|D_i|}{|D|}$ 其中,$n$ 表示特征 $A$ 的取值个数,$D_i$ 表示在特征 $A$ 取值为 $i$ 的样本集合,$|D|$ 表示样本集合的大小。 在选择最佳特征时,需要计算每个特征的信息增益比,选择信息增益比最大的特征作为当前节点的划分特征。 3. 决策树生成 从根节点开始,按照最佳特征进行划分,将样本集合划分成若干个子集合,对每个子集合递归生成子树,直到所有叶节点的样本集合属于同一类别或样本集合为空。 4. 决策树剪枝 为了避免过拟合,需要对决策树进行剪枝。一般采用预剪枝或后剪枝方法。预剪枝在生成决策树的过程中,如果某个节点的划分增益小于某个阈值,则不再进行划分;后剪枝则是在生成完整的决策树后,对决策树进行剪枝,将某些节点转换为叶节点。 下面是一个简单的C4.5算法的Python实现,其中使用了pandas库来处理数据集: ```python import pandas as pd import numpy as np class C45DecisionTree: def __init__(self, epsilon=0.1): self.epsilon = epsilon def fit(self, X, y): self.classes = np.unique(y) self.root = self._build_tree(X, y) def predict(self, X): return np.array([self._predict(x, self.root) for x in X]) def _build_tree(self, X, y): if len(np.unique(y)) == 1: return y[0] if len(X) == 0: return self._majority_vote(y) if len(X.columns) == 0: return self._majority_vote(y) best_feature = self._choose_feature(X, y) tree = {best_feature: {}} for value in np.unique(X[best_feature]): subset_X = X[X[best_feature] == value].drop(best_feature, axis=1) subset_y = y[X[best_feature] == value] subtree = self._build_tree(subset_X, subset_y) tree[best_feature][value] = subtree return tree def _choose_feature(self, X, y): n_features = len(X.columns) entropy = self._entropy(y) max_gain_ratio = 0 best_feature = None for col in X.columns: subset_entropy = 0 iv = 0 for value in np.unique(X[col]): subset_y = y[X[col] == value] subset_entropy += len(subset_y) / len(y) * self._entropy(subset_y) iv -= len(subset_y) / len(y) * np.log2(len(subset_y) / len(y)) gain_ratio = (entropy - subset_entropy) / iv if gain_ratio > max_gain_ratio: max_gain_ratio = gain_ratio best_feature = col if max_gain_ratio < self.epsilon: return None return best_feature def _entropy(self, y): entropy = 0 for cls in self.classes: p = len(y[y == cls]) / len(y) if p > 0: entropy -= p * np.log2(p) return entropy def _majority_vote(self, y): max_count = 0 most_common = None for cls in self.classes: count = len(y[y == cls]) if count > max_count: max_count = count most_common = cls return most_common def _predict(self, x, tree): if isinstance(tree, str): return tree for feature, subtree in tree.items(): if x[feature] in subtree: return self._predict(x, subtree[x[feature]]) return self._majority_vote(y) ``` 在实际使用时,可以使用sklearn的API来加载数据集,然后使用C4.5算法进行训练和预测: ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score X, y = load_iris(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) clf = C45DecisionTree() clf.fit(pd.DataFrame(X_train), y_train) y_pred = clf.predict(pd.DataFrame(X_test)) print('Accuracy:', accuracy_score(y_test, y_pred)) ```
阅读全文

相关推荐

最新推荐

recommend-type

决策树剪枝算法的python实现方法详解

在Python中实现决策树剪枝,通常会涉及到几个关键概念和算法,包括ID3、C4.5、CART等。 ID3算法是决策树构建的基础之一,它基于信息增益来选择最优属性进行节点划分。信息增益是衡量一个属性能带来多少信息减少,即...
recommend-type

Python机器学习之决策树算法实例详解

Python中实现决策树的库有多种,如scikit-learn库提供了`DecisionTreeClassifier`类,支持CART算法。这个库提供了训练、预测、剪枝等功能,并且可以处理缺失值和连续特征。以下是一个简化的示例: ```python from ...
recommend-type

基于ID3决策树算法的实现(Python版)

在实际应用中,ID3算法由于只处理离散特征且易受过拟合影响,已经逐渐被更优的C4.5和CART等决策树算法所取代。C4.5改进了ID3,能处理连续特征,而CART(Classification and Regression Trees)则引入了基尼不纯度...
recommend-type

C2000,28335Matlab Simulink代码生成技术,处理器在环,里面有电力电子常用的GPIO,PWM,ADC,DMA,定时器中断等各种电力电子工程师常用的模块儿,只需要有想法剩下的全部自

C2000,28335Matlab Simulink代码生成技术,处理器在环,里面有电力电子常用的GPIO,PWM,ADC,DMA,定时器中断等各种电力电子工程师常用的模块儿,只需要有想法剩下的全部自动代码生成, 电源建模仿真与控制原理 (1)数字电源的功率模块建模 (2)数字电源的环路补偿器建模 (3)数字电源的仿真和分析 (4)如何把数学控制方程变成硬件C代码; (重点你的想法如何实现)这是重点数字电源硬件资源、软件设计、上机实验调试 (1) DSP硬件资源; (2)DSP的CMD文件与数据的Q格式: (3) DSP的C程序设计; (4)数字电源的软件设计流程 (5)数字电源上机实验和调试(代码采用全中文注释)还有这个,下面来看看都有啥,有视频和对应资料(S代码,对应课件详细讲述传递函数推倒过程。
recommend-type

OpenArk64-1.3.8beta版-20250104

OpenArk64-1.3.8beta版-20250104,beta版解决Windows 11 23H2及以上进入内核模式,查看系统热键一片空白的情况
recommend-type

Python调试器vardbg:动画可视化算法流程

资源摘要信息:"vardbg是一个专为Python设计的简单调试器和事件探查器,它通过生成程序流程的动画可视化效果,增强了算法学习的直观性和互动性。该工具适用于Python 3.6及以上版本,并且由于使用了f-string特性,它要求用户的Python环境必须是3.6或更高。 vardbg是在2019年Google Code-in竞赛期间为CCExtractor项目开发而创建的,它能够跟踪每个变量及其内容的历史记录,并且还能跟踪容器内的元素(如列表、集合和字典等),以便用户能够深入了解程序的状态变化。" 知识点详细说明: 1. Python调试器(Debugger):调试器是开发过程中用于查找和修复代码错误的工具。 vardbg作为一个Python调试器,它为开发者提供了跟踪代码执行、检查变量状态和控制程序流程的能力。通过运行时监控程序,调试器可以发现程序运行时出现的逻辑错误、语法错误和运行时错误等。 2. 事件探查器(Event Profiler):事件探查器是对程序中的特定事件或操作进行记录和分析的工具。 vardbg作为一个事件探查器,可以监控程序中的关键事件,例如变量值的变化和函数调用等,从而帮助开发者理解和优化代码执行路径。 3. 动画可视化效果:vardbg通过生成程序流程的动画可视化图像,使得算法的执行过程变得生动和直观。这对于学习算法的初学者来说尤其有用,因为可视化手段可以提高他们对算法逻辑的理解,并帮助他们更快地掌握复杂的概念。 4. Python版本兼容性:由于vardbg使用了Python的f-string功能,因此它仅兼容Python 3.6及以上版本。f-string是一种格式化字符串的快捷语法,提供了更清晰和简洁的字符串表达方式。开发者在使用vardbg之前,必须确保他们的Python环境满足版本要求。 5. 项目背景和应用:vardbg是在2019年的Google Code-in竞赛中为CCExtractor项目开发的。Google Code-in是一项面向13到17岁的学生开放的竞赛活动,旨在鼓励他们参与开源项目。CCExtractor是一个用于从DVD、Blu-Ray和视频文件中提取字幕信息的软件。vardbg的开发过程中,该项目不仅为学生提供了一个实际开发经验的机会,也展示了学生对开源软件贡献的可能性。 6. 特定功能介绍: - 跟踪变量历史记录:vardbg能够追踪每个变量在程序执行过程中的历史记录,使得开发者可以查看变量值的任何历史状态,帮助诊断问题所在。 - 容器元素跟踪:vardbg支持跟踪容器类型对象内部元素的变化,包括列表、集合和字典等数据结构。这有助于开发者理解数据结构在算法执行过程中的具体变化情况。 通过上述知识点的详细介绍,可以了解到vardbg作为一个针对Python的调试和探查工具,在提供程序流程动画可视化效果的同时,还通过跟踪变量和容器元素等功能,为Python学习者和开发者提供了强大的支持。它不仅提高了学习算法的效率,也为处理和优化代码提供了强大的辅助功能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命

![【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命](https://docs.plesk.com/en-US/onyx/administrator-guide/images/78798.webp) # 摘要 本文全面探讨了IT设备维保管理的各个方面,从理论基础到实践案例,再到技术革新和未来展望。首先概述了维保计划的重要性,强调了其在延长设备生命周期和提升性能稳定性方面的作用。接着,文中详细论述了维保计划的制定原则,包括预防性维护、设备分类及成本效益分析等。通过分析不同行业的实践案例,本文揭示了成功维保计划的关键因素,并提出了效果评估与改进的策略。随后,探讨了性能监
recommend-type

python爬取网页链接,url = “https://koubei.16888.com/57233/0-0-0-0”

在Python中,使用如`requests`库来发送HTTP请求并抓取网页链接是比较常见的做法。以下是如何使用`requests`和BeautifulSoup库(用于解析HTML)来爬取给定URL上的信息: 首先,确保已安装`requests`和`beautifulsoup4`库,如果未安装可以使用以下命令安装: ```bash pip install requests beautifulsoup4 ``` 然后,你可以编写以下Python脚本来爬取指定URL的内容: ```python import requests from bs4 import BeautifulSoup # 定义要
recommend-type

掌握Web开发:Udacity天气日记项目解析

资源摘要信息: "Udacity-Weather-Journal:Web开发路线的Udacity纳米度-项目2" 知识点: 1. Udacity:Udacity是一个提供在线课程和纳米学位项目的教育平台,涉及IT、数据科学、人工智能、机器学习等众多领域。纳米学位是Udacity提供的一种专业课程认证,通过一系列课程的学习和实践项目,帮助学习者掌握专业技能,并提供就业支持。 2. Web开发路线:Web开发是构建网页和网站的应用程序的过程。学习Web开发通常包括前端开发(涉及HTML、CSS、JavaScript等技术)和后端开发(可能涉及各种服务器端语言和数据库技术)的学习。Web开发路线指的是在学习过程中所遵循的路径和进度安排。 3. 纳米度项目2:在Udacity提供的学习路径中,纳米学位项目通常是实践导向的任务,让学生能够在真实世界的情境中应用所学的知识。这些项目往往需要学生完成一系列具体任务,如开发一个网站、创建一个应用程序等,以此来展示他们所掌握的技能和知识。 4. Udacity-Weather-Journal项目:这个项目听起来是关于创建一个天气日记的Web应用程序。在完成这个项目时,学习者可能需要运用他们关于Web开发的知识,包括前端设计(使用HTML、CSS、Bootstrap等框架设计用户界面),使用JavaScript进行用户交互处理,以及可能的后端开发(如果需要保存用户数据,可能会使用数据库技术如SQLite、MySQL或MongoDB)。 5. 压缩包子文件:这里提到的“压缩包子文件”可能是一个笔误或误解,它可能实际上是指“压缩包文件”(Zip archive)。在文件名称列表中的“Udacity-Weather-journal-master”可能意味着该项目的所有相关文件都被压缩在一个名为“Udacity-Weather-journal-master.zip”的压缩文件中,这通常用于将项目文件归档和传输。 6. 文件名称列表:文件名称列表提供了项目文件的结构概览,它可能包含HTML、CSS、JavaScript文件以及可能的服务器端文件(如Python、Node.js文件等),此外还可能包括项目依赖文件(如package.json、requirements.txt等),以及项目文档和说明。 7. 实际项目开发流程:在开发像Udacity-Weather-Journal这样的项目时,学习者可能需要经历需求分析、设计、编码、测试和部署等阶段。在每个阶段,他们需要应用他们所学的理论知识,并解决在项目开发过程中遇到的实际问题。 8. 技术栈:虽然具体的技术栈未在标题和描述中明确提及,但一个典型的Web开发项目可能涉及的技术包括但不限于HTML5、CSS3、JavaScript(可能使用框架如React.js、Angular.js或Vue.js)、Bootstrap、Node.js、Express.js、数据库技术(如上所述),以及版本控制系统如Git。 9. 学习成果展示:完成这样的项目后,学习者将拥有一个可部署的Web应用程序,以及一个展示他们技术能力的项目案例,这些对于未来的求职和职业发展都是有价值的。 10. 知识点整合:在进行Udacity-Weather-Journal项目时,学习者需要将所学的多个知识点融合在一起,包括前端设计、用户体验、后端逻辑处理、数据存储和检索、以及可能的API调用等。 总结来说,Udacity-Weather-Journal项目是Udacity Web开发纳米学位课程中的一个重要实践环节,它要求学习者运用他们所学到的前端和后端开发技能,完成一个具体的Web应用程序项目。通过完成这样的项目,学习者能够将理论知识转化为实践经验,并为他们未来在IT行业的职业发展打下坚实的基础。