用c语言编写一个程序,可以在命令行输入参数,完成指定文件的压缩解压 命令行参数如下 rle file1 –c(-d) file2 第一个参数为可执行程序名称,第二个参数为原始文件名,第三个参数为压缩或解压缩选项,第四个参数为新文件名

时间: 2024-05-10 16:15:13 浏览: 7
以下是一个简单的基于C语言的程序,可以实现命令行输入参数,完成指定文件的压缩和解压缩功能: ```c #include <stdio.h> #include <stdlib.h> #define MAX_SIZE 1024 void encode(char *input_file, char *output_file) { FILE *in, *out; int count = 1, old = -1, new; if ((in = fopen(input_file, "rb")) == NULL) { printf("Error: Cannot open input file: %s\n", input_file); exit(1); } if ((out = fopen(output_file, "wb")) == NULL) { fclose(in); printf("Error: Cannot open output file: %s\n", output_file); exit(1); } while ((new = fgetc(in)) != EOF) { if (new == old) { count++; if (count == 256) { fputc(count - 1, out); fputc(old, out); count = 1; } } else { if (count > 1) { fputc(count, out); fputc(old, out); } else { fputc(old, out); } count = 1; old = new; } } if (count > 1) { fputc(count, out); fputc(old, out); } else { fputc(old, out); } fclose(in); fclose(out); } void decode(char *input_file, char *output_file) { FILE *in, *out; int count, ch; if ((in = fopen(input_file, "rb")) == NULL) { printf("Error: Cannot open input file: %s\n", input_file); exit(1); } if ((out = fopen(output_file, "wb")) == NULL) { fclose(in); printf("Error: Cannot open output file: %s\n", output_file); exit(1); } while ((count = fgetc(in)) != EOF) { ch = fgetc(in); if (count > 1) { for (int i = 0; i < count; i++) { fputc(ch, out); } } else { fputc(ch, out); } } fclose(in); fclose(out); } int main(int argc, char **argv) { char *input_file, *output_file; int option; if (argc != 5) { printf("Usage: rle input_file -c/-d output_file\n"); exit(1); } input_file = argv[2]; option = argv[3][1]; output_file = argv[4]; switch (option) { case 'c': encode(input_file, output_file); printf("File \"%s\" has been compressed as \"%s\".\n", input_file, output_file); break; case 'd': decode(input_file, output_file); printf("File \"%s\" has been decompressed as \"%s\".\n", input_file, output_file); break; default: printf("Error: Invalid option \"%c\".\n", option); exit(1); break; } return 0; } ``` 编译命令: ``` gcc rle.c -o rle ``` 使用示例: ``` ./rle file1 -c file2 ./rle file2 -d file3 ``` 其中,`file1` 是原始文件名,`file2` 是压缩后的文件名,`file3` 是解压后的文件名。`-c` 表示压缩选项,`-d` 表示解压选项。

相关推荐

最新推荐

recommend-type

基于Matlab的kohonen网络的聚类算法-网络入侵聚类

【作品名称】:基于Matlab的kohonen网络的聚类算法—网络入侵聚类 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:基于Matlab的kohonen网络的聚类算法—网络入侵聚类
recommend-type

基于Matlab的SVM神经网络的数据分类预测-葡萄酒种类识别

【作品名称】:基于Matlab的SVM神经网络的数据分类预测-葡萄酒种类识别 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:基于Matlab的SVM神经网络的数据分类预测-葡萄酒种类识别
recommend-type

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节 线性代数的核心问题是求解方程组。这些方程都是线性的,即未知数仅与数相乘——我们绝不会 遇见 x 乘以 y。我们的第一个线性方程组较小。接下来你来看看它引申出多远: 两个方程 两个未知数 x − 2y = 1 3x + 2y = 11 (1) 我们一次从一个行开始。第一个方程 x − 2y = 1 得出了 xy 平面的一条直线。由于点 x = 1, y = 0 解 出该方程,因此它在这条直线上。因为 3 − 2 = 1,所以点 x = 3, y = 1 也在这条直线上。若我们选择 x = 101,那我们求出 y = 50。 这条特定直线的斜率是 12,是因为当 x 变化 2 时 y 增加 1。斜率在微积分中很重要,然而这是线 性代数! 图 2.1 将展示第一条直线 x − 2y = 1。此“行图”中的第二条直线来自第二个方程 3x + 2y = 11。你 不能错过两条线的交点 x = 3, y = 1。点 (3, 1) 位于两条线上并且解出两个方程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

识别MATLAB微分方程求解中的混沌行为:分析非线性方程混沌行为的实用技巧

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程是描述物理、工程和金融等领域中动态系统的数学模型。MATLAB提供了强大的工具来求解微分方程,包括内置求解器和自定义函数
recommend-type

physon如何做ERP系统

作为一个AI语言模型,我可以给您提供一些基本的建议和思路: 1.明确需求和目标:在开始开发ERP系统之前,需要明确您的业务需求和目标,了解您的业务流程、流程数据、员工角色和权限、财务管理等方面的要求,这样才能更好的设计和开发ERP系统。 2.选择技术框架和开发工具:选择合适的技术框架和开发工具是ERP系统开发的关键。选择一种流行的技术框架和工具可以提高开发效率和质量。 3.设计数据库:ERP系统需要一个功能强大的数据库来存储数据。设计数据库需要考虑数据的完整性、安全性和可扩展性。 4.设计系统架构:系统架构是ERP系统的骨架,需要考虑系统的可扩展性、可维护性和性能。 5.开发和测试:
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

探索MATLAB微分方程求解中的分岔分析:揭示方程动态行为的秘密

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程在科学、工程和金融等领域有着广泛的应用。MATLAB作为一种强大的数值计算软件,提供了丰富的微分方程求解工具。本章将概述
recommend-type

ic验证工作中如何在平台中加入发数的总数?

在进行IC验证工作时,可以通过以下步骤在平台中加入发数的总数: 1. 打开IC验证工具(如Cadence Virtuoso)并打开对应的设计文件。 2. 在设计文件中选择需要计算发数的部分电路或模块。 3. 在IC验证工具中打开时序分析工具(如Cadence Tempus)。 4. 在时序分析工具中设置好时钟频率、时钟周期等参数。 5. 执行时序分析,生成时序报告。 6. 在时序报告中查找发数统计信息,将其记录下来。 7. 将发数统计信息添加到平台中,以便在之后的仿真或验证中使用。 需要注意的是,发数统计信息可能因为设计文件的不同而有所差异,需要根据实际情况进行调整和计算。