稀疏贝叶斯回归预测 matlab举例
时间: 2023-08-31 09:12:59 浏览: 112
以下是使用Matlab进行稀疏贝叶斯回归预测的示例代码:
加载数据:
```matlab
load diabetes
X = diabetes(:,1:8);
y = diabetes(:,9);
```
拆分数据集:
```matlab
cv = cvpartition(size(X,1),'HoldOut',0.3);
idx = cv.test;
Xtrain = X(~idx,:);
ytrain = y(~idx,:);
Xtest = X(idx,:);
ytest = y(idx,:);
```
训练模型:
```matlab
% 安装稀疏贝叶斯包
% 在Matlab命令行中输入:addpath(genpath('sparsedata'))
% 设置参数
options = SB2_UserOptions('iterations',1000,'diagnosticLevel',0);
% 训练模型
model = SB2_ParameterPrior(Xtrain,ytrain,'gaussian',options);
```
预测:
```matlab
ypred = SB2_Predict(Xtest,model);
```
计算误差:
```matlab
mse = mean((ytest - ypred).^2)
```
完整代码:
```matlab
load diabetes
X = diabetes(:,1:8);
y = diabetes(:,9);
cv = cvpartition(size(X,1),'HoldOut',0.3);
idx = cv.test;
Xtrain = X(~idx,:);
ytrain = y(~idx,:);
Xtest = X(idx,:);
ytest = y(idx,:);
options = SB2_UserOptions('iterations',1000,'diagnosticLevel',0);
model = SB2_ParameterPrior(Xtrain,ytrain,'gaussian',options);
ypred = SB2_Predict(Xtest,model);
mse = mean((ytest - ypred).^2)
```
阅读全文