粒子群算法伪代码python
时间: 2024-08-12 09:04:11 浏览: 46
数学建模算法模型汇总
5星 · 资源好评率100%
粒子群优化(Particle Swarm Optimization, PSO)是一种模拟鸟群或鱼群觅食行为的搜索算法,常用于解决优化问题。以下是简化的Python伪代码表示:
```python
# 初始化粒子位置和速度
def initialize_particles(num_particles, bounds):
particles = [{'position': np.random.uniform(bounds, bounds), 'velocity': np.zeros(len(bounds)),
'best_position': copy.deepcopy(particles['position']), 'fitness': np.inf} for _ in range(num_particles)]
return particles
# 更新粒子的位置和速度
def update_velocity_and_position(particles, best_positions, inertia=0.7, c1=2, c2=2, w=0.7):
for particle in particles:
r1, r2 = np.random.rand(), np.random.rand() # 随机数
particle['velocity'] = w * particle['velocity'] + c1 * r1 * (particle['best_position'] - particle['position']) + \
c2 * r2 * (best_positions['global_best_position'] - particle['position'])
particle['position'] += particle['velocity']
# 确保粒子在边界范围内
particle['position'] = clipToBounds(particle['position'], bounds)
# 计算并更新最佳位置和全局最佳位置
def evaluate_fitness(particles, objective_function):
for particle in particles:
particle['fitness'] = objective_function(particle['position'])
if particle['fitness'] < particle['best_fitness']:
particle['best_position'] = particle['position']
global_best_particle = min(particles, key=lambda p: p['fitness'])['position']
return particles, {'global_best_position': global_best_particle}
# 主循环
def pso(optimizer, num_iterations, objective_function, bounds):
particles = initialize_particles(optimizer.num_particles, bounds)
for i in range(num_iterations):
particles, best_positions = evaluate_fitness(particles, objective_function)
update_velocity_and_position(particles, best_positions)
return best_positions['global_best_position']
# 使用函数
optimizer = {'num_particles': 50} # 可调整参数
solution = pso(optimizer, 100, your_objective_function, your_bounds)
```
阅读全文