1. 根据pso的伪代码,利用python实现算法
时间: 2024-01-02 10:05:01 浏览: 67
下面是 Python 实现的 PSO 算法,其中包括初始化粒子、更新位置和速度、更新全局最优和个体最优等步骤:
```python
import random
# PSO 参数
POPULATION_SIZE = 20
MAX_ITERATION = 50
C1 = 1.5
C2 = 1.5
W = 0.7
# 优化目标函数
def objective_function(x):
return (x-2)**2
# 初始化粒子群
def initialize_particles():
particles = []
for i in range(POPULATION_SIZE):
position = random.uniform(-10, 10)
velocity = 0
particle = {'position': position, 'velocity': velocity, 'pbest': position, 'pbest_fitness': objective_function(position)}
particles.append(particle)
gbest = particles[0]['position']
gbest_fitness = particles[0]['pbest_fitness']
return particles, gbest, gbest_fitness
# 更新粒子位置和速度
def update_particles(particles, gbest):
for i in range(POPULATION_SIZE):
particle = particles[i]
velocity = W * particle['velocity'] + C1 * random.random() * (particle['pbest'] - particle['position']) + C2 * random.random() * (gbest - particle['position'])
position = particle['position'] + velocity
particle['position'] = position
particle['velocity'] = velocity
# 更新全局最优和个体最优
def update_bests(particles, gbest, gbest_fitness):
for i in range(POPULATION_SIZE):
particle = particles[i]
fitness = objective_function(particle['position'])
if fitness < particle['pbest_fitness']:
particle['pbest'] = particle['position']
particle['pbest_fitness'] = fitness
if fitness < gbest_fitness:
gbest = particle['position']
gbest_fitness = fitness
return gbest, gbest_fitness
# PSO 主函数
def pso():
# 初始化粒子群
particles, gbest, gbest_fitness = initialize_particles()
# 迭代寻优
for i in range(MAX_ITERATION):
# 更新粒子位置和速度
update_particles(particles, gbest)
# 更新全局最优和个体最优
gbest, gbest_fitness = update_bests(particles, gbest, gbest_fitness)
# 打印当前的最优解
print('iteration {}: gbest_fitness = {}'.format(i+1, gbest_fitness))
return gbest, gbest_fitness
# 运行 PSO 算法
pso()
```
这个实现中,`initialize_particles` 函数用于初始化粒子群;`update_particles` 函数用于更新粒子位置和速度;`update_bests` 函数用于更新全局最优和个体最优。最后的 `pso` 函数是 PSO 的主函数,其中包括了初始化和迭代两个步骤。在迭代过程中,我们不断更新粒子位置和速度,并更新全局最优和个体最优。最后输出最优解和最优适应度。
阅读全文