如何在yolov5增加SAM
时间: 2023-10-22 17:32:08 浏览: 200
要在yolov5中增加SAM(Spatial Attention Module),可以按照以下步骤进行操作:
1. 在yolov5的代码库中找到models/yolo.py文件。
2. 找到YoloV5的构造函数__init__,在其中增加以下代码:
from models.common import Conv
from models.layers import SAM
self.backbone = nn.Sequential(
Conv(3, 32, kernel_size=3, stride=1),
SAM(32, 32, kernel_size=3, stride=1),
Conv(32, 64, kernel_size=3, stride=2),
SAM(64, 64, kernel_size=3, stride=1),
Conv(64, 64, kernel_size=1, stride=1),
SAM(64, 64, kernel_size=3, stride=1),
Conv(64, 64, kernel_size=1, stride=1),
SAM(64, 64, kernel_size=3, stride=1),
Conv(64, 64, kernel_size=1, stride=1),
SAM(64, 64, kernel_size=3, stride=1),
Conv(64, 64, kernel_size=1, stride=1),
SAM(64, 64, kernel_size=3, stride=1),
Conv(64, 128, kernel_size=3, stride=2),
SAM(128, 128, kernel_size=3, stride=1),
Conv(128, 128, kernel_size=1, stride=1),
SAM(128, 128, kernel_size=3, stride=1),
Conv(128, 64, kernel_size=1, stride=1),
SAM(64, 64, kernel_size=3, stride=1),
Conv(64, 128, kernel_size=3, stride=2),
SAM(128, 128, kernel_size=3, stride=1),
Conv(128, 128, kernel_size=1, stride=1),
SAM(128, 128, kernel_size=3, stride=1),
Conv(128, 64, kernel_size=1, stride=1),
SAM(64, 64, kernel_size=3, stride=1),
Conv(64, 128, kernel_size=3, stride=2),
SAM(128, 128, kernel_size=3, stride=1),
Conv(128, 256, kernel_size=1, stride=1),
SAM(256, 256, kernel_size=3, stride=1),
Conv(256, 128, kernel_size=1, stride=1),
SAM(128, 128, kernel_size=3, stride=1),
Conv(128, 256, kernel_size=3, stride=2),
SAM(256, 256, kernel_size=3, stride=1),
Conv(256, 256, kernel_size=1, stride=1),
SAM(256, 256, kernel_size=3, stride=1),
Conv(256, 128, kernel_size=1, stride=1),
SAM(128, 128, kernel_size=3, stride=1),
Conv(128, 256, kernel_size=3, stride=2),
SAM(256, 256, kernel_size=3, stride=1),
Conv(256, 512, kernel_size=1, stride=1),
SAM(512, 512, kernel_size=3, stride=1),
Conv(512, 256, kernel_size=1, stride=1),
SAM(256, 256, kernel_size=3, stride=1),
Conv(256, 512, kernel_size=3, stride=2),
SAM(512, 512, kernel_size=3, stride=1),
Conv(512, 512, kernel_size=1, stride=1),
SAM(512, 512, kernel_size=3, stride=1),
Conv(512, 256, kernel_size=1, stride=1),
SAM(256, 256, kernel_size=3, stride=1),
Conv(256, 512, kernel_size=3, stride=2),
SAM(512, 512, kernel_size=3, stride=1),
Conv(512, 1024, kernel_size=1, stride=1),
SAM(1024, 1024, kernel_size=3, stride=1),
Conv(1024, 512, kernel_size=1, stride=1),
SAM(512, 512, kernel_size=3, stride=1),
Conv(512, 1024, kernel_size=3, stride=2),
SAM(1024, 1024, kernel_size=3, stride=1),
Conv(1024, 1024, kernel_size=1, stride=1),
SAM(1024, 1024, kernel_size=3, stride=1),
Conv(1024, 512, kernel_size=1, stride=1),
SAM(512, 512, kernel_size=3, stride=1),
Conv(512, 1024, kernel_size=3, stride=2),
SAM(1024, 1024, kernel_size=3, stride=1),
Conv(1024, 1024, kernel_size=3, stride=2),
SAM(1024, 1024, kernel_size=3, stride=1),
)
3. 在YOLOv5的forward方法中,使用SAM模块替换现有的卷积层。例如:
x = self.backbone(x)
x = self.neck(x)
x = self.head(x)
可以替换为:
x = self.backbone(x)
x = self.neck(x)
x = SAM(x)
x = self.head(x)
4. 在训练过程中,使用以下代码启用SAM的反向传播:
if hasattr(self, 'module'):
self.module.backbone.apply(add_sam_gradient_hook)
5. 最后,在训练中使用SAM进行训练即可。
请注意,这只是一个简单的示例,您可能需要根据您的具体需求进行调整。
阅读全文