python输出df.loc中time列的值
时间: 2024-05-15 12:17:32 浏览: 105
可以使用如下代码输出df.loc中time列的值:
```python
print(df.loc[:, 'time'])
```
其中,df表示DataFrame类型的数据,loc表示对df数据进行索引和切片,':'表示选择所有行,'time'表示选择列名为time的列。通过print函数可以将time列的值输出到控制台上。
相关问题
import pandas as pd import numpy as np #消除警告的命令 import warnings warnings.filterwarnings("ignore") #打开表 def open_data_def(): data_df = pd.read_csv("transactions.csv",encoding="gbk") #将列表题修改为中文的 data_df.columns = ["客户号","银行卡号","刷卡金额","刷卡时间","卡类型"] if data_df.duplicated().sum(): use_df = data_df.drop_duplicates() return use_df #添加时间信息函数 def add_time(): use_df = open_data_def() #打开表函数 use_df["刷卡时间"]=pd.to_datetime(use_df.loc[:,"刷卡时间"]) print(use_df.dtypes) use_df["年"]=use_df.loc[:,"刷卡时间"].dt.year use_df["月"]=use_df.loc[:,"刷卡时间"].dt.month use_df["日"]=use_df.loc[:,"刷卡时间"].dt.day use_df["时"]=use_df.loc[:,"刷卡时间"].dt.hour return use_df use_df = add_time() #调用添加时间信息函数 use_df整合按客户号统计的代码与按时间统计的代码到函数中:效果为:可以通过输入"客户号"或"时间"来选择相应 的函数进行操作
好的,我会将你提供的代码整合到一个函数中,并添加选择功能。以下是整合后的代码:
```python
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")
def open_data_def():
data_df = pd.read_csv("transactions.csv", encoding="gbk")
data_df.columns = ["客户号", "银行卡号", "刷卡金额", "刷卡时间", "卡类型"]
if data_df.duplicated().sum():
use_df = data_df.drop_duplicates()
return use_df
def add_time():
use_df = open_data_def()
use_df["刷卡时间"] = pd.to_datetime(use_df.loc[:, "刷卡时间"])
use_df["年"] = use_df.loc[:, "刷卡时间"].dt.year
use_df["月"] = use_df.loc[:, "刷卡时间"].dt.month
use_df["日"] = use_df.loc[:, "刷卡时间"].dt.day
use_df["时"] = use_df.loc[:, "刷卡时间"].dt.hour
return use_df
def customer_or_time_statistics(option):
use_df = add_time()
if option == "客户号":
# 按客户号统计的代码
customer_statistics_result = use_df.groupby("客户号").agg({"刷卡金额": np.sum})
return customer_statistics_result
elif option == "时间":
# 按时间统计的代码
time_statistics_result = use_df.groupby(["年", "月"]).agg({"刷卡金额": np.sum})
return time_statistics_result
else:
return "无效选项,请输入'客户号'或'时间'。"
# 通过输入选择相应的函数进行操作
option = input("请输入选项(客户号/时间):")
result = customer_or_time_statistics(option)
print(result)
```
在上面的代码中,`customer_or_time_statistics` 函数接受一个选项参数 `option`,根据用户输入的选项,函数将执行相应的统计代码并返回结果。请注意,代码中使用了 `input` 函数来获取用户的选项输入。你可以根据实际情况进行调整和修改。
这样,你就可以通过输入"客户号"或"时间"来选择相应的函数进行操作了。
import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt mpl.rcParams['axes.unicode_minus'] = False df = pd.read_csv('merged_sentiment_idx.csv', parse_dates=['created_time']) df.set_index(df.created_time, inplace=True) df = df.loc['2017-4-15':'2018-4-15'] fig, ax1 = plt.subplots() ax2 = ax1.twinx() ax1.plot(df.index, df['BI_MA'], color='#1F77B4', linestyle=':') ax2.plot(df.index, df['close'], color='#4B73B1') ax1.set_xlabel('日期') ax1.set_ylabel('BI指标') ax2.set_ylabel('上证指数') plt.show()
这是一个使用Pandas、Numpy、Matplotlib库进行数据分析和可视化的Python代码。首先,从'merged_sentiment_idx.csv'文件中读取数据并设置时间戳为索引,然后选择了2017年4月15日至2018年4月15日的数据。接着,使用Matplotlib库绘制了双y轴图,左侧y轴对应BI指标,右侧y轴对应上证指数。其中,BI指标数据用蓝色虚线表示,上证指数用蓝色实线表示。最后,使用plt.show()函数展示了图形。
阅读全文