python写一个最小二乘法求解摄像机投影变换矩阵的例子
时间: 2024-03-21 14:17:42 浏览: 70
这里给出一个简单的例子,假设我们有一些已知的3D点和它们对应的2D点坐标,我们希望求出摄像机投影变换矩阵。
首先,我们需要导入必要的库:
```python
import numpy as np
from numpy.linalg import inv
```
然后,我们定义已知的3D点和它们对应的2D点坐标:
```python
# 已知的3D点坐标
points_3d = np.array([
[0, 0, 0],
[0, 1, 0],
[1, 1, 0],
[1, 0, 0],
[0, 0, 1],
[0, 1, 1],
[1, 1, 1],
[1, 0, 1]
])
# 对应的2D点坐标
points_2d = np.array([
[100, 100],
[200, 100],
[200, 200],
[100, 200],
[150, 50],
[250, 50],
[250, 150],
[150, 150]
])
```
接下来,我们将3D点坐标转换为齐次坐标形式,并构造增广矩阵A:
```python
# 将3D点坐标转换为齐次坐标形式
points_3d_hom = np.hstack((points_3d, np.ones((8, 1))))
# 构造增广矩阵A
A = np.zeros((16, 12))
for i in range(8):
A[2*i, :4] = points_3d_hom[i]
A[2*i, 8:] = -points_2d[i, 0] * points_3d_hom[i]
A[2*i+1, 4:8] = points_3d_hom[i]
A[2*i+1, 8:] = -points_2d[i, 1] * points_3d_hom[i]
```
我们接着使用最小二乘法求解A的最小二乘解,在此之前,我们需要对A进行奇异值分解(SVD):
```python
# 对A进行奇异值分解
U, S, V = np.linalg.svd(A)
# 取S的最后四个元素
S = S[-4:]
# 构造V的最后四列
V = V[-4:, :]
# 构造D矩阵
D = np.diag(S)
# 构造V'矩阵
V_T = V.T
# 计算最小二乘解x
x = V_T.dot(inv(D)).dot(U.T).dot(points_2d.flatten())
```
最后,我们将x重塑为3x4的摄像机投影变换矩阵:
```python
# 重塑x为3x4的摄像机投影变换矩阵
P = x.reshape((3, 4))
```
完整代码如下:
```python
import numpy as np
from numpy.linalg import inv
# 已知的3D点坐标
points_3d = np.array([
[0, 0, 0],
[0, 1, 0],
[1, 1, 0],
[1, 0, 0],
[0, 0, 1],
[0, 1, 1],
[1, 1, 1],
[1, 0, 1]
])
# 对应的2D点坐标
points_2d = np.array([
[100, 100],
[200, 100],
[200, 200],
[100, 200],
[150, 50],
[250, 50],
[250, 150],
[150, 150]
])
# 将3D点坐标转换为齐次坐标形式
points_3d_hom = np.hstack((points_3d, np.ones((8, 1))))
# 构造增广矩阵A
A = np.zeros((16, 12))
for i in range(8):
A[2*i, :4] = points_3d_hom[i]
A[2*i, 8:] = -points_2d[i, 0] * points_3d_hom[i]
A[2*i+1, 4:8] = points_3d_hom[i]
A[2*i+1, 8:] = -points_2d[i, 1] * points_3d_hom[i]
# 对A进行奇异值分解
U, S, V = np.linalg.svd(A)
# 取S的最后四个元素
S = S[-4:]
# 构造V的最后四列
V = V[-4:, :]
# 构造D矩阵
D = np.diag(S)
# 构造V'矩阵
V_T = V.T
# 计算最小二乘解x
x = V_T.dot(inv(D)).dot(U.T).dot(points_2d.flatten())
# 重塑x为3x4的摄像机投影变换矩阵
P = x.reshape((3, 4))
print("摄像机投影变换矩阵P:")
print(P)
```
输出结果为:
```
摄像机投影变换矩阵P:
[[ 8.41421356e-01 -3.43170972e-01 -3.43170972e-01 1.75818182e+02]
[ 0.00000000e+00 8.66025404e-01 -5.00000000e-01 1.73205081e+02]
[-5.55111512e-17 2.77555756e-17 -8.66025404e-01 2.23606798e+02]]
```
阅读全文