用STM32F4编写程序用LCD屏ILI9341输出“张翼鹏”

时间: 2023-12-10 17:42:44 浏览: 62
以下是使用STM32F4和ILI9341 LCD屏幕输出“张翼鹏”的示例代码: ```c #include "stm32f4xx.h" #include "stm32f4xx_gpio.h" #include "stm32f4xx_spi.h" // 定义SPI接口 #define LCD_SPI_PORT SPI5 #define LCD_SPI_RCC RCC_APB2Periph_SPI5 #define LCD_SPI_CLK 45000000 // 定义SPI引脚 #define LCD_SPI_SCK_PIN GPIO_Pin_7 #define LCD_SPI_SCK_PORT GPIOA #define LCD_SPI_MISO_PIN GPIO_Pin_11 #define LCD_SPI_MISO_PORT GPIOC #define LCD_SPI_MOSI_PIN GPIO_Pin_12 #define LCD_SPI_MOSI_PORT GPIOC // 定义LCD控制引脚 #define LCD_CS_PIN GPIO_Pin_2 #define LCD_CS_PORT GPIOB #define LCD_DC_PIN GPIO_Pin_1 #define LCD_DC_PORT GPIOB #define LCD_RST_PIN GPIO_Pin_0 #define LCD_RST_PORT GPIOB // 定义LCD屏幕分辨率 #define LCD_WIDTH 240 #define LCD_HEIGHT 320 // 初始化SPI接口 void LCD_SPI_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; SPI_InitTypeDef SPI_InitStructure; // 使能SPI时钟 RCC_APB2PeriphClockCmd(LCD_SPI_RCC, ENABLE); // 配置SPI引脚 GPIO_InitStructure.GPIO_Pin = LCD_SPI_SCK_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(LCD_SPI_SCK_PORT, &GPIO_InitStructure); GPIO_PinAFConfig(LCD_SPI_SCK_PORT, GPIO_PinSource7, GPIO_AF_SPI5); GPIO_InitStructure.GPIO_Pin = LCD_SPI_MISO_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(LCD_SPI_MISO_PORT, &GPIO_InitStructure); GPIO_PinAFConfig(LCD_SPI_MISO_PORT, GPIO_PinSource11, GPIO_AF_SPI5); GPIO_InitStructure.GPIO_Pin = LCD_SPI_MOSI_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(LCD_SPI_MOSI_PORT, &GPIO_InitStructure); GPIO_PinAFConfig(LCD_SPI_MOSI_PORT, GPIO_PinSource12, GPIO_AF_SPI5); // 配置SPI SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; SPI_InitStructure.SPI_Mode = SPI_Mode_Master; SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2; SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; SPI_InitStructure.SPI_CRCPolynomial = 7; SPI_Init(LCD_SPI_PORT, &SPI_InitStructure); // 使能SPI SPI_Cmd(LCD_SPI_PORT, ENABLE); } // 初始化LCD控制引脚 void LCD_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE); GPIO_InitStructure.GPIO_Pin = LCD_CS_PIN | LCD_DC_PIN | LCD_RST_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(GPIOB, &GPIO_InitStructure); } // 初始化LCD屏幕 void LCD_Init(void) { LCD_GPIO_Init(); LCD_SPI_Init(); // 复位LCD屏幕 GPIO_ResetBits(LCD_RST_PORT, LCD_RST_PIN); DelayMs(10); GPIO_SetBits(LCD_RST_PORT, LCD_RST_PIN); DelayMs(10); // 发送初始化命令 LCD_WriteCommand(0x01); // 软件复位 DelayMs(10); LCD_WriteCommand(0xCF); LCD_WriteData(0x00); LCD_WriteData(0xC1); LCD_WriteData(0x30); DelayMs(10); LCD_WriteCommand(0xED); LCD_WriteData(0x64); LCD_WriteData(0x03); LCD_WriteData(0x12); LCD_WriteData(0x81); DelayMs(10); LCD_WriteCommand(0xE8); LCD_WriteData(0x85); LCD_WriteData(0x10); LCD_WriteData(0x7A); DelayMs(10); LCD_WriteCommand(0xCB); LCD_WriteData(0x39); LCD_WriteData(0x2C); LCD_WriteData(0x00); LCD_WriteData(0x34); LCD_WriteData(0x02); DelayMs(10); LCD_WriteCommand(0xF7); LCD_WriteData(0x20); DelayMs(10); LCD_WriteCommand(0xEA); LCD_WriteData(0x00); LCD_WriteData(0x00); DelayMs(10); LCD_WriteCommand(0xC0); // 电源控制1 LCD_WriteData(0x23); DelayMs(10); LCD_WriteCommand(0xC1); // 电源控制2 LCD_WriteData(0x10); DelayMs(10); LCD_WriteCommand(0xC5); // VCOM控制1 LCD_WriteData(0x3E); LCD_WriteData(0x28); DelayMs(10); LCD_WriteCommand(0xC7); // VCOM控制2 LCD_WriteData(0x86); DelayMs(10); LCD_WriteCommand(0x36); // MADCTL LCD_WriteData(0x68); DelayMs(10); LCD_WriteCommand(0x3A); // COLMOD LCD_WriteData(0x55); DelayMs(10); LCD_WriteCommand(0xB1); // Frame rate control,最大 70 Hz,同时保证低功耗 LCD_WriteData(0x00); LCD_WriteData(0x18); DelayMs(10); LCD_WriteCommand(0xB6); // Display function control,RGB/MCU interface select LCD_WriteData(0x08); LCD_WriteData(0x82); LCD_WriteData(0x27); DelayMs(10); LCD_WriteCommand(0xF2); // 3Gamma control,disable LCD_WriteData(0x00); DelayMs(10); LCD_WriteCommand(0x26); // Gamma curve selected LCD_WriteData(0x01); DelayMs(10); LCD_WriteCommand(0xE0); // Set Gamma,positive gamma correction LCD_WriteData(0x0F); LCD_WriteData(0x31); LCD_WriteData(0x2B); LCD_WriteData(0x0C); LCD_WriteData(0x0E); LCD_WriteData(0x08); LCD_WriteData(0x4E); LCD_WriteData(0xF1); LCD_WriteData(0x37); LCD_WriteData(0x07); LCD_WriteData(0x10); LCD_WriteData(0x03); LCD_WriteData(0x0E); LCD_WriteData(0x09); LCD_WriteData(0x00); DelayMs(10); LCD_WriteCommand(0XE1); // Set Gamma,negative gamma correction LCD_WriteData(0x00); LCD_WriteData(0x0E); LCD_WriteData(0x14); LCD_WriteData(0x03); LCD_WriteData(0x11); LCD_WriteData(0x07); LCD_WriteData(0x31); LCD_WriteData(0xC1); LCD_WriteData(0x48); LCD_WriteData(0x08); LCD_WriteData(0x0F); LCD_WriteData(0x0C); LCD_WriteData(0x31); LCD_WriteData(0x36); LCD_WriteData(0x0F); DelayMs(10); LCD_WriteCommand(0x11); // Sleep out DelayMs(120); LCD_WriteCommand(0x29); // Display on // 清屏 LCD_Clear(0xFFFF); } // 写入数据到LCD屏幕 void LCD_WriteData(uint8_t data) { GPIO_SetBits(LCD_DC_PORT, LCD_DC_PIN); // DC设置为高电平表示写入数据 GPIO_ResetBits(LCD_CS_PORT, LCD_CS_PIN); // 使能片选 while (SPI_I2S_GetFlagStatus(LCD_SPI_PORT, SPI_I2S_FLAG_TXE) == RESET); // 等待发送缓冲区为空 SPI_I2S_SendData(LCD_SPI_PORT, data); // 发送数据 while (SPI_I2S_GetFlagStatus(LCD_SPI_PORT, SPI_I2S_FLAG_RXNE) == RESET); // 等待接收缓冲区非空 SPI_I2S_ReceiveData(LCD_SPI_PORT); // 读取接收到的数据,清除RXNE标志位 GPIO_SetBits(LCD_CS_PORT, LCD_CS_PIN); // 禁止片选 } // 写入命令到LCD屏幕 void LCD_WriteCommand(uint8_t cmd) { GPIO_ResetBits(LCD_DC_PORT, LCD_DC_PIN); // DC设置为低电平表示写入命令 GPIO_ResetBits(LCD_CS_PORT, LCD_CS_PIN); // 使能片选 while (SPI_I2S_GetFlagStatus(LCD_SPI_PORT, SPI_I2S_FLAG_TXE) == RESET); // 等待发送缓冲区为空 SPI_I2S_SendData(LCD_SPI_PORT, cmd); // 发送命令 while (SPI_I2S_GetFlagStatus(LCD_SPI_PORT, SPI_I2S_FLAG_RXNE) == RESET); // 等待接收缓冲区非空 SPI_I2S_ReceiveData(LCD_SPI_PORT); // 读取接收到的数据,清除RXNE标志位 GPIO_SetBits(LCD_CS_PORT, LCD_CS_PIN); // 禁止片选 } // 清屏 void LCD_Clear(uint16_t color) { int i, j; LCD_SetArea(0, 0, LCD_WIDTH-1, LCD_HEIGHT-1); for (i = 0; i < LCD_HEIGHT; i++) { for (j = 0; j < LCD_WIDTH; j++) { LCD_WriteData(color >> 8); LCD_WriteData(color & 0xFF); } } } // 设置绘制区域 void LCD_SetArea(uint16_t x1, uint16_t y1, uint16_t x2, uint16_t y2) { LCD_WriteCommand(0x2A); LCD_WriteData(x1 >> 8); LCD_WriteData(x1 & 0xFF); LCD_WriteData(x2 >> 8); LCD_WriteData(x2 & 0xFF); LCD_WriteCommand(0x2B); LCD_WriteData(y1 >> 8); LCD_WriteData(y1 & 0xFF); LCD_WriteData(y2 >> 8); LCD_WriteData(y2 & 0xFF); LCD_WriteCommand(0x2C); } // 在指定位置绘制一个像素点 void LCD_DrawPixel(uint16_t x, uint16_t y, uint16_t color) { LCD_SetArea(x, y, x, y); LCD_WriteData(color >> 8); LCD_WriteData(color & 0xFF); } // 在指定位置绘制一个字符 void LCD_DrawChar(uint16_t x, uint16_t y, char c, uint16_t color, uint16_t bgcolor) { int i, j; uint8_t font[16]; for (i = 0; i < 16; i++) { font[i] = Font16x16[c*16+i]; } for (i = 0; i < 16; i++) { for (j = 0; j < 8; j++) { if (font[i] & (1 << (7-j))) { LCD_DrawPixel(x+j, y+i, color); } else { LCD_DrawPixel(x+j, y+i, bgcolor); } } } } // 在指定位置绘制一个字符串 void LCD_DrawString(uint16_t x, uint16_t y, char *str, uint16_t color, uint16_t bgcolor) { while (*str) { LCD_DrawChar(x, y, *str++, color, bgcolor); x += 8; } } int main(void) { LCD_Init(); LCD_DrawString(50, 100, "张翼鹏", 0x0000, 0xFFFF); while (1) {} } ``` 在代码中,需要注意以下几点: 1. 需要定义LCD屏幕的SPI接口、引脚和分辨率; 2. 需要初始化SPI接口和LCD控制引脚; 3. 需要发送初始化命令,具体的命令可以参考LCD屏幕的数据手册; 4. 绘制字符和字符串时需要使用字库,本例中使用了一个16x16的字库,可以根据需要自行替换; 5. 绘制字符和字符串时需要注意字体的大小和颜色。 6. 在main函数中,我们先调用LCD_Init()函数初始化LCD屏幕,然后调用LCD_DrawString()函数在屏幕上绘制字符串“张翼鹏”。 需要注意的是,上述代码中的一些函数调用和数据类型可能与你的程序略有不同,需要根据具体情况进行修改。

相关推荐

最新推荐

recommend-type

STM32单片机驱动LCD1602液晶程序

最近看到网上很多人都在找STM32单片机驱动LCD1602液晶程序,有的人写的比较复杂刚好自己最近也在搞STM32单片机。就花了点时间写出一份仅供参考和学习。单片机IO驱动能力弱这里用的是10K上拉电阻,也可以采用74HC245...
recommend-type

STM32 MCU上的LCD-TFT显示控制器(LTDC).pdf

本应用笔记介绍了STM32微控制器的LCD-TFT显示控制器,并演示了如何使用和配置LTDC外设。还重点阐述了为获得最佳图形性能所需要的一些硬件、软件和架构考虑因素。
recommend-type

基于stm32的lcd5110显示程序

基于stm32的lcd5110显示程序,是利用用库开发的。连接方式:GPIOB5&lt;======================&gt;SCE GPIOB6&lt;======================&gt;RES GPIOB7&lt;======================&gt;DC GPIOB8&lt;======================&gt;SDIN GPIOB9...
recommend-type

华为OD机试D卷 - 用连续自然数之和来表达整数 - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

Screenshot_2024-05-10-20-21-01-857_com.chaoxing.mobile.jpg

Screenshot_2024-05-10-20-21-01-857_com.chaoxing.mobile.jpg
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

spring添加xml配置文件

1. 创建一个新的Spring配置文件,例如"applicationContext.xml"。 2. 在文件头部添加XML命名空间和schema定义,如下所示: ``` <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。