df.loc
时间: 2023-07-25 11:07:17 浏览: 144
`df.loc` 是 Pandas 库中用于基于标签(label)获取数据的方法,可以通过行标签和列标签来获取指定的单元格、行或列的数据。例如:
```python
import pandas as pd
df = pd.read_csv('data.csv', index_col='id') # 读取 csv 文件,将 id 列作为索引列
data = df.loc[1001, 'name'] # 获取 id 为 1001 的行的 name 列的值
```
这里使用 `df.loc` 方法获取了 id 为 1001 的行的 name 列的值。
相关问题
1. from nltk.corpus import stopwords 2. STOPWORDS = set(stopwords.words('english')) 3. from sklearn.feature_extraction.text import CountVectorizer 4. 5. from textblob import TextBlob 6. import plotly.express as px 7. import plotly.figure_factory as ff 8. import plotly.graph_objects as go 9. 10. df = pd.read_csv('data/corona_fake.csv') 11. df.loc[df['label'] == 'Fake', ['label']] = 'FAKE' 12. df.loc[df['label'] == 'fake', ['label']] = 'FAKE' 13. df.loc[df['source'] == 'facebook', ['source']] = 'Facebook' 14. 15. df.loc[5]['label'] = 'FAKE' 16. df.loc[15]['label'] = 'TRUE' 17. df.loc[43]['label'] = 'FAKE' 18. df.loc[131]['label'] = 'TRUE' 19. df.loc[242]['label'] = 'FAKE' 20. 21. df = df.sample(frac=1).reset_index(drop=True) 22. df.label.value_counts()此代码运用到的处理方法
这个代码使用了以下几种处理方法:
1. Pandas:用于数据集的读取和处理。
2. NLTK:用于停用词的处理,可以帮助去除文本中的无用词汇。
3. CountVectorizer:用于对文本进行特征提取,提取出文本中的词频特征。
4. TextBlob:用于对文本进行情感分析,判断文本的情感倾向。
5. Plotly:用于可视化分析结果,可以生成各种图表和图形。
这些方法可以辅助我们完成数据集的读取和处理、文本特征提取、情感分析和可视化等关键步骤,从而实现对虚假新闻的检测和分析。需要注意的是,这些方法和工具包的使用需要结合具体的场景和数据集进行调整和优化,才能得到更好的效果。
df_nona = df['date'].notna() df.loc[df_nona,'date'] = df.loc[df_nona,'date'].apply(lambda x:str(x)[:-2]) #第二步 选择非NA得值转换成时间 df.loc[df_nona,'date'] = pd.to_datetime(df.loc[df_nona,'date']) df_nona1 = df['date_received'].notna() df.loc[df_nona1,'date_received'] = df.loc[df_nona1,'date_received'].apply(lambda x:str(x)[:-2]) df.loc[df_nona1,'date_received'] = pd.to_datetime(df.loc[df_nona1,'date_received']) in_15 = sum((df['date'] - df['date_received']).dt.days<15)
这段代码是针对 Pandas 数据库中的 DataFrame 对象进行操作的。首先通过 `df['date'].notna()` 选择出非 NA 值,然后通过 `.apply(lambda x:str(x)[:-2])` 将时间格式转换为字符串格式,再通过 `pd.to_datetime()` 将字符串格式转换为时间格式。同样的操作也针对了 `date_received` 列。
最后一行代码是计算满足条件 `(df['date'] - df['date_received']).dt.days<15` 的记录数目,即在 `date` 列和 `date_received` 列之间相差小于 15 天的记录数目。其中 `(df['date'] - df['date_received']).dt.days` 返回的是一个 Series 对象,表示两个时间之间相差的天数。`.dt` 表示对 Series 中的时间格式进行操作,`.days` 表示返回相差的天数,最后通过 `<15` 来筛选出相差小于 15 天的记录。`sum()` 函数用于统计符合条件的记录数目。
阅读全文