import numpy as np def dense(a_in, W, b, g): units = W.shape[1] a_out = np.zeros(units) for j in range(units): w = W[:,j] z = np.dot(w, a_in) + b[j] a_out[j] = g(z) return a_out def sequential(x): W1 = np.array([[1, 2], [3, 4]]) b1 = np.array([-1, -1]) W2 = np.array([[-3, 4], [5, -6]]) b2 = np.array([1, 1]) W3 = np.array([[7, -8], [-9, 10]]) b3 = np.array([2, 2]) a1 = dense(x, W1, b1, np.tanh) a2 = dense(a1, W2, b2, np.tanh) a3 = dense(a2, W3, b3, np.tanh) f_x = a3 return f_x a_in = np.array([-2, 4]) print(sequential(a_in))

时间: 2024-04-27 15:22:06 浏览: 9
这段代码实现了一个基于神经网络的前向传播函数,其中包含了三个全连接层。具体来说,dense函数实现了一个全连接层,其输入为a_in,权重矩阵为W,偏置向量为b,激活函数为g。而sequential函数则将三个全连接层组成了一个三层神经网络,并对输入x进行前向传播,最终输出f_x。 在这个例子中,输入x为一个二维向量[-2, 4],输出f_x为一个二维向量[1.0, 1.0]。这里使用了tanh作为激活函数,其实现了一个非线性的变换,使得网络能够学习到非线性的模式。
相关问题

修改代码:import numpy as np def dense(a_in, W, b, g): units = W.shape[1] a_out = np.zeros(units) for j in range(units): w = W[:, j] z = np.dot(w, a_in) + b[j] a_out[j] = g(z) return a_out def sequential(x): W1 = np.array([[1],[2]]) b1 = np.array([-1]) W2 = np.array([[-3],[4]]) b2 = np.array([1]) W3 = np.array([[5],[-6]]) b3 = np.array([2]) a1 = dense(x, W1, b1, np.tanh) a2 = dense(a1, W2, b2, np.tanh) a3 = dense(a2, W3, b3, np.tanh) f_x = a3 return f_x a_in = np.array([-2, 4]) print(sequential(a_in))

修改后的代码如下: ``` import numpy as np def dense(a_in, W, b, g): units = W.shape[1] a_out = np.zeros(units) for j in range(units): w = W[:, j] z = np.dot(w, a_in) + b[j] a_out[j] = g(z) return a_out def sequential(x): W1 = np.array([[1, 2], [3, 4]]) b1 = np.array([-1, -1]) W2 = np.array([[-3, 4], [5, -6]]) b2 = np.array([1, 1]) W3 = np.array([[7, -8], [-9, 10]]) b3 = np.array([2, 2]) a1 = dense(x, W1, b1, np.tanh) a2 = dense(a1, W2, b2, np.tanh) a3 = dense(a2, W3, b3, np.tanh) f_x = a3 return f_x a_in = np.array([-2, 4]) print(sequential(a_in)) ``` 主要的修改: 1. 修改了 `W1`、`b1`、`W2`、`b2`、`W3`、`b3` 的维度,使其与输入向量 `x` 和输出向量 `f_x` 的维度匹配。 2. 将 `W1`、`b1`、`W2`、`b2`、`W3`、`b3` 的值修改为与原代码的维度匹配的值。 这样,您应该可以成功运行该代码并得到正确的输出了。

解释每行代码:import numpy as np def dense(a_in, W, b, g): units = W.shape[1] a_out = np.zeros(units) for j in range(units): w = W[:,j] z = np.dot(w, a_in) + b[j] a_out[j] = g(z) return a_out def sequential(x): W1 = np.array([[1, 2], [3, 4]]) b1 = np.array([-1, -1]) W2 = np.array([[-3, 4], [5, -6]]) b2 = np.array([1, 1]) W3 = np.array([[7, -8], [-9, 10]]) b3 = np.array([2, 2]) a1 = dense(x, W1, b1, np.tanh) a2 = dense(a1, W2, b2, np.tanh) a3 = dense(a2, W3, b3, np.tanh) f_x = a3 return f_x a_in = np.array([-2, 4]) print(sequential(a_in))

第一行代码:import numpy as np 导入了numpy库并将其重命名为np,以便在代码中使用numpy中的函数和方法。 第二行代码:def dense(a_in, W, b, g): 定义了一个名为dense的函数,该函数接受四个参数:输入向量a_in,权重矩阵W,偏置向量b,激活函数g。 第三行代码:units = W.shape[1] 计算权重矩阵W的列数,即该层的神经元数量,并将其赋值给变量units。 第四行代码:a_out = np.zeros(units) 创建一个长度为units的全0向量,并将其赋值给变量a_out,用于存储该层的输出向量。 第五行代码:for j in range(units): 循环遍历该层的所有神经元,其中j表示当前神经元的索引。 第六行代码:w = W[:,j] 取出权重矩阵W的第j列,即当前神经元的权重向量,并将其赋值给变量w。 第七行代码:z = np.dot(w, a_in) + b[j] 计算该神经元的加权输入,即将权重向量w与输入向量a_in做点积,并加上该神经元的偏置b[j]。 第八行代码:a_out[j] = g(z) 将该神经元的加权输入z通过激活函数g进行非线性变换,并将结果赋值给输出向量a_out的第j个元素。 第九行代码:return a_out 返回该层的输出向量a_out。 第十行代码:def sequential(x): 定义了一个名为sequential的函数,该函数接受一个参数x,表示神经网络的输入向量。 第十一行代码:W1 = np.array([[1, 2], [3, 4]]) 定义了第一层的权重矩阵W1,其大小为2x2,表示有两个输入和两个神经元。 第十二行代码:b1 = np.array([-1, -1]) 定义了第一层的偏置向量b1,其大小为2,表示有两个神经元,每个神经元都有一个偏置。 第十三行代码:W2 = np.array([[-3, 4], [5, -6]]) 定义了第二层的权重矩阵W2,其大小为2x2,表示有两个神经元和两个输入。 第十四行代码:b2 = np.array([1, 1]) 定义了第二层的偏置向量b2,其大小为2,表示有两个神经元,每个神经元都有一个偏置。 第十五行代码:W3 = np.array([[7, -8], [-9, 10]]) 定义了第三层的权重矩阵W3,其大小为2x2,表示有两个神经元和两个输入。 第十六行代码:b3 = np.array([2, 2]) 定义了第三层的偏置向量b3,其大小为2,表示有两个神经元,每个神经元都有一个偏置。 第十七行代码:a1 = dense(x, W1, b1, np.tanh) 调用dense函数,计算第一层的输出向量a1,其中输入向量为x,权重矩阵为W1,偏置向量为b1,激活函数为tanh。 第十八行代码:a2 = dense(a1, W2, b2, np.tanh) 调用dense函数,计算第二层的输出向量a2,其中输入向量为a1,权重矩阵为W2,偏置向量为b2,激活函数为tanh。 第十九行代码:a3 = dense(a2, W3, b3, np.tanh) 调用dense函数,计算第三层的输出向量a3,其中输入向量为a2,权重矩阵为W3,偏置向量为b3,激活函数为tanh。 第二十行代码:f_x = a3 将第三层的输出向量a3赋值给变量f_x,表示神经网络的最终输出。 第二十一行代码:return f_x 返回神经网络的最终输出向量f_x。 第二十二行代码:a_in = np.array([-2, 4]) 定义了输入向量a_in,其大小为2。 第二十三行代码:print(sequential(a_in)) 调用sequential函数,对输入向量a_in进行前向传播,输出神经网络的最终输出向量。

相关推荐

import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, LSTM from sklearn.metrics import r2_score,median_absolute_error,mean_absolute_error # 读取数据 data = pd.read_csv(r'C:/Users/Ljimmy/Desktop/yyqc/peijian/销量数据rnn.csv') # 取出特征参数 X = data.iloc[:,2:].values # 数据归一化 scaler = MinMaxScaler(feature_range=(0, 1)) X[:, 0] = scaler.fit_transform(X[:, 0].reshape(-1, 1)).flatten() #X = scaler.fit_transform(X) #scaler.fit(X) #X = scaler.transform(X) # 划分训练集和测试集 train_size = int(len(X) * 0.8) test_size = len(X) - train_size train, test = X[0:train_size, :], X[train_size:len(X), :] # 转换为监督学习问题 def create_dataset(dataset, look_back=1): X, Y = [], [] for i in range(len(dataset) - look_back - 1): a = dataset[i:(i + look_back), :] X.append(a) Y.append(dataset[i + look_back, 0]) return np.array(X), np.array(Y) look_back = 12 X_train, Y_train = create_dataset(train, look_back) #Y_train = train[:, 2:] # 取第三列及以后的数据 X_test, Y_test = create_dataset(test, look_back) #Y_test = test[:, 2:] # 取第三列及以后的数据 # 转换为3D张量 X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) # 构建LSTM模型 model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1))) model.add(LSTM(units=50)) model.add(Dense(units=1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(X_train, Y_train, epochs=5, batch_size=32) #model.fit(X_train, Y_train.reshape(Y_train.shape[0], 1), epochs=10, batch_size=32) # 预测下一个月的销量 last_month_sales = data.tail(12).iloc[:,2:].values #last_month_sales = data.tail(1)[:,2:].values last_month_sales = scaler.transform(last_month_sales) last_month_sales = np.reshape(last_month_sales, (1, look_back, 1)) next_month_sales = model.predict(last_month_sales) next_month_sales = scaler.inverse_transform(next_month_sales) print('Next month sales: %.0f' % next_month_sales[0][0]) # 计算RMSE误差 rmse = np.sqrt(np.mean((next_month_sales - last_month_sales) ** 2)) print('Test RMSE: %.3f' % rmse)IndexError Traceback (most recent call last) Cell In[1], line 36 33 X_test, Y_test = create_dataset(test, look_back) 34 #Y_test = test[:, 2:] # 取第三列及以后的数据 35 # 转换为3D张量 ---> 36 X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) 37 X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) 38 # 构建LSTM模型 IndexError: tuple index out of range代码修改

import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, LSTM import matplotlib.pyplot as plt # 读取CSV文件 data = pd.read_csv('77.csv', header=None) # 将数据集划分为训练集和测试集 train_size = int(len(data) * 0.7) train_data = data.iloc[:train_size, 1:2].values.reshape(-1,1) test_data = data.iloc[train_size:, 1:2].values.reshape(-1,1) # 对数据进行归一化处理 scaler = MinMaxScaler(feature_range=(0, 1)) train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) # 构建训练集和测试集 def create_dataset(dataset, look_back=1): X, Y = [], [] for i in range(len(dataset) - look_back): X.append(dataset[i:(i+look_back), 0]) Y.append(dataset[i+look_back, 0]) return np.array(X), np.array(Y) look_back = 3 X_train, Y_train = create_dataset(train_data, look_back) X_test, Y_test = create_dataset(test_data, look_back) # 转换为LSTM所需的输入格式 X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) # 构建LSTM模型 model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(look_back, 1))) model.add(LSTM(units=50)) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, Y_train, epochs=100, batch_size=32) # 预测测试集并进行反归一化处理 Y_pred = model.predict(X_test) Y_pred = scaler.inverse_transform(Y_pred) Y_test = scaler.inverse_transform(Y_test) # 输出RMSE指标 rmse = np.sqrt(np.mean((Y_pred - Y_test)**2)) print('RMSE:', rmse) # 绘制训练集真实值和预测值图表 train_predict = model.predict(X_train) train_predict = scaler.inverse_transform(train_predict) train_actual = scaler.inverse_transform(Y_train.reshape(-1, 1)) plt.plot(train_actual, label='Actual') plt.plot(train_predict, label='Predicted') plt.title('Training Set') plt.xlabel('Time (h)') plt.ylabel('kWh') plt.legend() plt.show() # 绘制测试集真实值和预测值图表 plt.plot(Y_test, label='Actual') plt.plot(Y_pred, label='Predicted') plt.title('Testing Set') plt.xlabel('Time (h)') plt.ylabel('kWh') plt.legend() plt.show()以上代码运行时报错,错误为ValueError: Expected 2D array, got 1D array instead: array=[-0.04967795 0.09031832 0.07590125]. Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.如何进行修改

import numpy as np from tensorflow import keras # 加载手写数字图像和标签 def load_data(): train_data = np.loadtxt('train_images.csv', delimiter=',') train_labels = np.loadtxt('train_labels.csv', delimiter=',') test_data = np.loadtxt('test_image.csv', delimiter=',') return train_data, train_labels, test_data # 数据预处理 def preprocess_data(train_data, test_data): # 归一化到 [0, 1] 范围 train_data = train_data / 255.0 test_data = test_data / 255.0 # 将数据 reshape 成适合 CNN 的输入形状 (样本数, 高度, 宽度, 通道数) train_data = train_data.reshape(-1, 28, 28, 1) test_data = test_data.reshape(-1, 28, 28, 1) return train_data, test_data # 构建 CNN 模型 def build_model(): model = keras.Sequential([ keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)), keras.layers.MaxPooling2D(pool_size=(2, 2)), keras.layers.Flatten(), keras.layers.Dense(units=128, activation='relu'), keras.layers.Dense(units=10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model # 进行数字识别 def recognize_digit(image, model): probabilities = model.predict(image) digit = np.argmax(probabilities) return digit # 主函数 def main(): # 加载数据 train_data, train_labels, test_data = load_data() # 数据预处理 train_data, test_data = preprocess_data(train_data, test_data) # 构建并训练模型 model = build_model() model.fit(train_data, train_labels, epochs=10, batch_size=32) # 进行数字识别 recognized_digit = recognize_digit(test_data, model) print("识别结果:", recognized_digit) if __name__ == '__main__': main()

import numpy as np import pandas as pd import tensorflow as tf from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import r2_score,median_absolute_error,mean_absolute_error # 读取数据 data = pd.read_csv(r'C:/Users/Ljimmy/Desktop/yyqc/peijian/销量数据rnn.csv') dataset = data.values # 数据归一化 scaler = MinMaxScaler(feature_range=(0, 1)) dataset = scaler.fit_transform(dataset) # 分割训练集和测试集 train_size = int(len(dataset) * 0.67) test_size = len(dataset) - train_size train, test = dataset[0:train_size, :], dataset[train_size:len(dataset), :] # 将数据集转化为适合GRU的数据格式 def create_dataset(dataset): X, Y = [], [] for i in range(len(dataset)-1): a = dataset[i:(i+1), :] X.append(a) Y.append(dataset[i+1, :]) return np.array(X), np.array(Y) train_X, train_Y = create_dataset(train) train_Y = train_Y[:, 2:] # 取第三列及以后的数据 test_X, test_Y = create_dataset(test) test_Y = test_Y[:, 2:] # 取第三列及以后的数据 # 定义GRU模型 model = tf.keras.Sequential([ tf.keras.layers.GRU(units=64, return_sequences=True, input_shape=(1, 3)), tf.keras.layers.GRU(units=32), tf.keras.layers.Dense(3)]) # 编译模型 model.compile(optimizer='adam', loss='mse') # 训练模型 model.fit(train_X, train_Y, epochs=100, batch_size=16, verbose=2) # 预测测试集 test_predict = model.predict(test_X) test_predict = scaler.inverse_transform(test_predict) #test_Y = scaler.inverse_transform(test_Y.reshape(-1, 1)) # 计算RMSE误差 rmse = np.sqrt(np.mean((test_predict - test_Y) ** 2)) print('Test RMSE:',rmse) # 预测下一个月的销量 last_month_sales = data.tail(1).values last_month_sales = scaler.transform(last_month_sales) next_month_sales = model.predict(np.array([last_month_sales])) next_month_sales = scaler.inverse_transform(next_month_sales) print('Next month sales:',next_month_sales[0][0])预测结果不够准确,如何增加准确率

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

Windows 运行Python脚本

要在 Windows 上运行 Python 脚本,你需要先安装 Python。可以从官网下载 Python 安装包并按照提示进行安装。安装完成后,就可以在命令行中输入 `python` 命令,进入 Python 解释器环境。 接着,你可以编写 Python 脚本,保存为 `.py` 后缀的文件。在命令行中进入脚本所在的目录,输入 `python script.py` 命令来运行脚本。其中 `script.py` 是你的脚本文件名。 如果你想在 Windows 上运行一个 Python 程序,但不想打开命令行窗口,可以将脚本文件拖动到 Python 可执行文件 `python.exe` 上,
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩