import numpy as np def dense(a_in, W, b, g): units = W.shape[0] a_out = np.zeros(units) for j in range(units): w = W[j] z = np.dot(w, a_in) + b[j] a_out[j] = g(z) return a_out def sequential(x): W1 = np.array([[1,-3,5], [2,4,-6]]) b1 = np.array([-1,1,2]) W2 = np.array([[-1,2], [3,-4], [-5,6]]) b2 = np.array([2,-2]) W3 = np.array([[-2,1], [3,-4]]) b3 = np.array([1,-2]) W4 = np.array([[3,-1]]) b4 = np.array([-2]) a1 = dense(x, W1, b1, np.tanh) a2 = dense(a1, W2, b2, np.tanh) a3 = dense(a2, W3, b3, np.tanh) a4 = dense(a3, W4, b4, np.tanh) f_x = a4 return f_x a_in = np.array([-2, 4]) print(sequential(a_in))

时间: 2024-04-28 19:20:24 浏览: 16
这段代码是一个神经网络的前向传播过程,包括了四个全连接层(dense)和四个激活函数(np.tanh),将输入向量a_in经过多次线性变换和非线性变换后,得到输出向量f_x。其中,每个全连接层的参数(权重W和偏置b)都是事先确定好的,依次为W1, b1, W2, b2, W3, b3, W4, b4。这个神经网络的输入维度为2,输出维度为1。通过执行这段代码,可以得到神经网络对输入a_in的预测输出。
相关问题

修改代码:import numpy as np def dense(a_in, W, b, g): units = W.shape[1] a_out = np.zeros(units) for j in range(units): w = W[:, j] z = np.dot(w, a_in) + b[j] a_out[j] = g(z) return a_out def sequential(x): W1 = np.array([[1],[2]]) b1 = np.array([-1]) W2 = np.array([[-3],[4]]) b2 = np.array([1]) W3 = np.array([[5],[-6]]) b3 = np.array([2]) a1 = dense(x, W1, b1, np.tanh) a2 = dense(a1, W2, b2, np.tanh) a3 = dense(a2, W3, b3, np.tanh) f_x = a3 return f_x a_in = np.array([-2, 4]) print(sequential(a_in))

修改后的代码如下: ``` import numpy as np def dense(a_in, W, b, g): units = W.shape[1] a_out = np.zeros(units) for j in range(units): w = W[:, j] z = np.dot(w, a_in) + b[j] a_out[j] = g(z) return a_out def sequential(x): W1 = np.array([[1, 2], [3, 4]]) b1 = np.array([-1, -1]) W2 = np.array([[-3, 4], [5, -6]]) b2 = np.array([1, 1]) W3 = np.array([[7, -8], [-9, 10]]) b3 = np.array([2, 2]) a1 = dense(x, W1, b1, np.tanh) a2 = dense(a1, W2, b2, np.tanh) a3 = dense(a2, W3, b3, np.tanh) f_x = a3 return f_x a_in = np.array([-2, 4]) print(sequential(a_in)) ``` 主要的修改: 1. 修改了 `W1`、`b1`、`W2`、`b2`、`W3`、`b3` 的维度,使其与输入向量 `x` 和输出向量 `f_x` 的维度匹配。 2. 将 `W1`、`b1`、`W2`、`b2`、`W3`、`b3` 的值修改为与原代码的维度匹配的值。 这样,您应该可以成功运行该代码并得到正确的输出了。

解释每行代码:import numpy as np def dense(a_in, W, b, g): units = W.shape[1] a_out = np.zeros(units) for j in range(units): w = W[:,j] z = np.dot(w, a_in) + b[j] a_out[j] = g(z) return a_out def sequential(x): W1 = np.array([[1, 2], [3, 4]]) b1 = np.array([-1, -1]) W2 = np.array([[-3, 4], [5, -6]]) b2 = np.array([1, 1]) W3 = np.array([[7, -8], [-9, 10]]) b3 = np.array([2, 2]) a1 = dense(x, W1, b1, np.tanh) a2 = dense(a1, W2, b2, np.tanh) a3 = dense(a2, W3, b3, np.tanh) f_x = a3 return f_x a_in = np.array([-2, 4]) print(sequential(a_in))

第一行代码:import numpy as np 导入了numpy库并将其重命名为np,以便在代码中使用numpy中的函数和方法。 第二行代码:def dense(a_in, W, b, g): 定义了一个名为dense的函数,该函数接受四个参数:输入向量a_in,权重矩阵W,偏置向量b,激活函数g。 第三行代码:units = W.shape[1] 计算权重矩阵W的列数,即该层的神经元数量,并将其赋值给变量units。 第四行代码:a_out = np.zeros(units) 创建一个长度为units的全0向量,并将其赋值给变量a_out,用于存储该层的输出向量。 第五行代码:for j in range(units): 循环遍历该层的所有神经元,其中j表示当前神经元的索引。 第六行代码:w = W[:,j] 取出权重矩阵W的第j列,即当前神经元的权重向量,并将其赋值给变量w。 第七行代码:z = np.dot(w, a_in) + b[j] 计算该神经元的加权输入,即将权重向量w与输入向量a_in做点积,并加上该神经元的偏置b[j]。 第八行代码:a_out[j] = g(z) 将该神经元的加权输入z通过激活函数g进行非线性变换,并将结果赋值给输出向量a_out的第j个元素。 第九行代码:return a_out 返回该层的输出向量a_out。 第十行代码:def sequential(x): 定义了一个名为sequential的函数,该函数接受一个参数x,表示神经网络的输入向量。 第十一行代码:W1 = np.array([[1, 2], [3, 4]]) 定义了第一层的权重矩阵W1,其大小为2x2,表示有两个输入和两个神经元。 第十二行代码:b1 = np.array([-1, -1]) 定义了第一层的偏置向量b1,其大小为2,表示有两个神经元,每个神经元都有一个偏置。 第十三行代码:W2 = np.array([[-3, 4], [5, -6]]) 定义了第二层的权重矩阵W2,其大小为2x2,表示有两个神经元和两个输入。 第十四行代码:b2 = np.array([1, 1]) 定义了第二层的偏置向量b2,其大小为2,表示有两个神经元,每个神经元都有一个偏置。 第十五行代码:W3 = np.array([[7, -8], [-9, 10]]) 定义了第三层的权重矩阵W3,其大小为2x2,表示有两个神经元和两个输入。 第十六行代码:b3 = np.array([2, 2]) 定义了第三层的偏置向量b3,其大小为2,表示有两个神经元,每个神经元都有一个偏置。 第十七行代码:a1 = dense(x, W1, b1, np.tanh) 调用dense函数,计算第一层的输出向量a1,其中输入向量为x,权重矩阵为W1,偏置向量为b1,激活函数为tanh。 第十八行代码:a2 = dense(a1, W2, b2, np.tanh) 调用dense函数,计算第二层的输出向量a2,其中输入向量为a1,权重矩阵为W2,偏置向量为b2,激活函数为tanh。 第十九行代码:a3 = dense(a2, W3, b3, np.tanh) 调用dense函数,计算第三层的输出向量a3,其中输入向量为a2,权重矩阵为W3,偏置向量为b3,激活函数为tanh。 第二十行代码:f_x = a3 将第三层的输出向量a3赋值给变量f_x,表示神经网络的最终输出。 第二十一行代码:return f_x 返回神经网络的最终输出向量f_x。 第二十二行代码:a_in = np.array([-2, 4]) 定义了输入向量a_in,其大小为2。 第二十三行代码:print(sequential(a_in)) 调用sequential函数,对输入向量a_in进行前向传播,输出神经网络的最终输出向量。

相关推荐

import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, LSTM from sklearn.metrics import r2_score,median_absolute_error,mean_absolute_error # 读取数据 data = pd.read_csv(r'C:/Users/Ljimmy/Desktop/yyqc/peijian/销量数据rnn.csv') # 取出特征参数 X = data.iloc[:,2:].values # 数据归一化 scaler = MinMaxScaler(feature_range=(0, 1)) X[:, 0] = scaler.fit_transform(X[:, 0].reshape(-1, 1)).flatten() #X = scaler.fit_transform(X) #scaler.fit(X) #X = scaler.transform(X) # 划分训练集和测试集 train_size = int(len(X) * 0.8) test_size = len(X) - train_size train, test = X[0:train_size, :], X[train_size:len(X), :] # 转换为监督学习问题 def create_dataset(dataset, look_back=1): X, Y = [], [] for i in range(len(dataset) - look_back - 1): a = dataset[i:(i + look_back), :] X.append(a) Y.append(dataset[i + look_back, 0]) return np.array(X), np.array(Y) look_back = 12 X_train, Y_train = create_dataset(train, look_back) #Y_train = train[:, 2:] # 取第三列及以后的数据 X_test, Y_test = create_dataset(test, look_back) #Y_test = test[:, 2:] # 取第三列及以后的数据 # 转换为3D张量 X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) # 构建LSTM模型 model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1))) model.add(LSTM(units=50)) model.add(Dense(units=1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(X_train, Y_train, epochs=5, batch_size=32) #model.fit(X_train, Y_train.reshape(Y_train.shape[0], 1), epochs=10, batch_size=32) # 预测下一个月的销量 last_month_sales = data.tail(12).iloc[:,2:].values #last_month_sales = data.tail(1)[:,2:].values last_month_sales = scaler.transform(last_month_sales) last_month_sales = np.reshape(last_month_sales, (1, look_back, 1)) next_month_sales = model.predict(last_month_sales) next_month_sales = scaler.inverse_transform(next_month_sales) print('Next month sales: %.0f' % next_month_sales[0][0]) # 计算RMSE误差 rmse = np.sqrt(np.mean((next_month_sales - last_month_sales) ** 2)) print('Test RMSE: %.3f' % rmse)IndexError Traceback (most recent call last) Cell In[1], line 36 33 X_test, Y_test = create_dataset(test, look_back) 34 #Y_test = test[:, 2:] # 取第三列及以后的数据 35 # 转换为3D张量 ---> 36 X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) 37 X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) 38 # 构建LSTM模型 IndexError: tuple index out of range代码修改

import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, LSTM import matplotlib.pyplot as plt # 读取CSV文件 data = pd.read_csv('77.csv', header=None) # 将数据集划分为训练集和测试集 train_size = int(len(data) * 0.7) train_data = data.iloc[:train_size, 1:2].values.reshape(-1,1) test_data = data.iloc[train_size:, 1:2].values.reshape(-1,1) # 对数据进行归一化处理 scaler = MinMaxScaler(feature_range=(0, 1)) train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) # 构建训练集和测试集 def create_dataset(dataset, look_back=1): X, Y = [], [] for i in range(len(dataset) - look_back): X.append(dataset[i:(i+look_back), 0]) Y.append(dataset[i+look_back, 0]) return np.array(X), np.array(Y) look_back = 3 X_train, Y_train = create_dataset(train_data, look_back) X_test, Y_test = create_dataset(test_data, look_back) # 转换为LSTM所需的输入格式 X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) # 构建LSTM模型 model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(look_back, 1))) model.add(LSTM(units=50)) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, Y_train, epochs=100, batch_size=32) # 预测测试集并进行反归一化处理 Y_pred = model.predict(X_test) Y_pred = scaler.inverse_transform(Y_pred) Y_test = scaler.inverse_transform(Y_test) # 输出RMSE指标 rmse = np.sqrt(np.mean((Y_pred - Y_test)**2)) print('RMSE:', rmse) # 绘制训练集真实值和预测值图表 train_predict = model.predict(X_train) train_predict = scaler.inverse_transform(train_predict) train_actual = scaler.inverse_transform(Y_train.reshape(-1, 1)) plt.plot(train_actual, label='Actual') plt.plot(train_predict, label='Predicted') plt.title('Training Set') plt.xlabel('Time (h)') plt.ylabel('kWh') plt.legend() plt.show() # 绘制测试集真实值和预测值图表 plt.plot(Y_test, label='Actual') plt.plot(Y_pred, label='Predicted') plt.title('Testing Set') plt.xlabel('Time (h)') plt.ylabel('kWh') plt.legend() plt.show()以上代码运行时报错,错误为ValueError: Expected 2D array, got 1D array instead: array=[-0.04967795 0.09031832 0.07590125]. Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.如何进行修改

import numpy as np from tensorflow import keras # 加载手写数字图像和标签 def load_data(): train_data = np.loadtxt('train_images.csv', delimiter=',') train_labels = np.loadtxt('train_labels.csv', delimiter=',') test_data = np.loadtxt('test_image.csv', delimiter=',') return train_data, train_labels, test_data # 数据预处理 def preprocess_data(train_data, test_data): # 归一化到 [0, 1] 范围 train_data = train_data / 255.0 test_data = test_data / 255.0 # 将数据 reshape 成适合 CNN 的输入形状 (样本数, 高度, 宽度, 通道数) train_data = train_data.reshape(-1, 28, 28, 1) test_data = test_data.reshape(-1, 28, 28, 1) return train_data, test_data # 构建 CNN 模型 def build_model(): model = keras.Sequential([ keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)), keras.layers.MaxPooling2D(pool_size=(2, 2)), keras.layers.Flatten(), keras.layers.Dense(units=128, activation='relu'), keras.layers.Dense(units=10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model # 进行数字识别 def recognize_digit(image, model): probabilities = model.predict(image) digit = np.argmax(probabilities) return digit # 主函数 def main(): # 加载数据 train_data, train_labels, test_data = load_data() # 数据预处理 train_data, test_data = preprocess_data(train_data, test_data) # 构建并训练模型 model = build_model() model.fit(train_data, train_labels, epochs=10, batch_size=32) # 进行数字识别 recognized_digit = recognize_digit(test_data, model) print("识别结果:", recognized_digit) if __name__ == '__main__': main()

import numpy as np import pandas as pd import tensorflow as tf from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import r2_score,median_absolute_error,mean_absolute_error # 读取数据 data = pd.read_csv(r'C:/Users/Ljimmy/Desktop/yyqc/peijian/销量数据rnn.csv') dataset = data.values # 数据归一化 scaler = MinMaxScaler(feature_range=(0, 1)) dataset = scaler.fit_transform(dataset) # 分割训练集和测试集 train_size = int(len(dataset) * 0.67) test_size = len(dataset) - train_size train, test = dataset[0:train_size, :], dataset[train_size:len(dataset), :] # 将数据集转化为适合GRU的数据格式 def create_dataset(dataset): X, Y = [], [] for i in range(len(dataset)-1): a = dataset[i:(i+1), :] X.append(a) Y.append(dataset[i+1, :]) return np.array(X), np.array(Y) train_X, train_Y = create_dataset(train) train_Y = train_Y[:, 2:] # 取第三列及以后的数据 test_X, test_Y = create_dataset(test) test_Y = test_Y[:, 2:] # 取第三列及以后的数据 # 定义GRU模型 model = tf.keras.Sequential([ tf.keras.layers.GRU(units=64, return_sequences=True, input_shape=(1, 3)), tf.keras.layers.GRU(units=32), tf.keras.layers.Dense(3)]) # 编译模型 model.compile(optimizer='adam', loss='mse') # 训练模型 model.fit(train_X, train_Y, epochs=100, batch_size=16, verbose=2) # 预测测试集 test_predict = model.predict(test_X) test_predict = scaler.inverse_transform(test_predict) #test_Y = scaler.inverse_transform(test_Y.reshape(-1, 1)) # 计算RMSE误差 rmse = np.sqrt(np.mean((test_predict - test_Y) ** 2)) print('Test RMSE:',rmse) # 预测下一个月的销量 last_month_sales = data.tail(1).values last_month_sales = scaler.transform(last_month_sales) next_month_sales = model.predict(np.array([last_month_sales])) next_month_sales = scaler.inverse_transform(next_month_sales) print('Next month sales:',next_month_sales[0][0])预测结果不够准确,如何增加准确率

最新推荐

recommend-type

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节 线性代数的核心问题是求解方程组。这些方程都是线性的,即未知数仅与数相乘——我们绝不会 遇见 x 乘以 y。我们的第一个线性方程组较小。接下来你来看看它引申出多远: 两个方程 两个未知数 x − 2y = 1 3x + 2y = 11 (1) 我们一次从一个行开始。第一个方程 x − 2y = 1 得出了 xy 平面的一条直线。由于点 x = 1, y = 0 解 出该方程,因此它在这条直线上。因为 3 − 2 = 1,所以点 x = 3, y = 1 也在这条直线上。若我们选择 x = 101,那我们求出 y = 50。 这条特定直线的斜率是 12,是因为当 x 变化 2 时 y 增加 1。斜率在微积分中很重要,然而这是线 性代数! 图 2.1 将展示第一条直线 x − 2y = 1。此“行图”中的第二条直线来自第二个方程 3x + 2y = 11。你 不能错过两条线的交点 x = 3, y = 1。点 (3, 1) 位于两条线上并且解出两个方程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

识别MATLAB微分方程求解中的混沌行为:分析非线性方程混沌行为的实用技巧

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程是描述物理、工程和金融等领域中动态系统的数学模型。MATLAB提供了强大的工具来求解微分方程,包括内置求解器和自定义函数
recommend-type

physon如何做ERP系统

作为一个AI语言模型,我可以给您提供一些基本的建议和思路: 1.明确需求和目标:在开始开发ERP系统之前,需要明确您的业务需求和目标,了解您的业务流程、流程数据、员工角色和权限、财务管理等方面的要求,这样才能更好的设计和开发ERP系统。 2.选择技术框架和开发工具:选择合适的技术框架和开发工具是ERP系统开发的关键。选择一种流行的技术框架和工具可以提高开发效率和质量。 3.设计数据库:ERP系统需要一个功能强大的数据库来存储数据。设计数据库需要考虑数据的完整性、安全性和可扩展性。 4.设计系统架构:系统架构是ERP系统的骨架,需要考虑系统的可扩展性、可维护性和性能。 5.开发和测试:
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

探索MATLAB微分方程求解中的分岔分析:揭示方程动态行为的秘密

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程在科学、工程和金融等领域有着广泛的应用。MATLAB作为一种强大的数值计算软件,提供了丰富的微分方程求解工具。本章将概述
recommend-type

ic验证工作中如何在平台中加入发数的总数?

在进行IC验证工作时,可以通过以下步骤在平台中加入发数的总数: 1. 打开IC验证工具(如Cadence Virtuoso)并打开对应的设计文件。 2. 在设计文件中选择需要计算发数的部分电路或模块。 3. 在IC验证工具中打开时序分析工具(如Cadence Tempus)。 4. 在时序分析工具中设置好时钟频率、时钟周期等参数。 5. 执行时序分析,生成时序报告。 6. 在时序报告中查找发数统计信息,将其记录下来。 7. 将发数统计信息添加到平台中,以便在之后的仿真或验证中使用。 需要注意的是,发数统计信息可能因为设计文件的不同而有所差异,需要根据实际情况进行调整和计算。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩