请修改如下代码: def LSTNetAttention(trainX1, trainX2, trainY, config): # 定义输入层 input_data1 = Input(shape=(trainX1.shape[1], trainX1.shape[2])) input_data2 = Input(shape=(trainX2.shape[1], trainX2.shape[2])) # 定义 LSTM 模型 ... # 使用 GARCH 模型预测波动率 am = arch.arch_model(trainY, vol='GARCH', p=1, q=1) res = am.fit() volatility = res.forecast(horizon=1).variance.iloc[-1].values # 将预测结果和波动率相乘,得到最终的预测结果 pred = model.predict([trainX1, trainX2]) pred = pred * np.sqrt(volatility) # 将预测结果作为一个新的特征加入到模型中 new_feature = pred.reshape(-1, 1) # 重塑成 (batch_size, 1) 的形状 concat = concatenate([lstm_out1, lstm_out2, new_feature]) res = Activation('sigmoid')(concat) # 定义模型并返回 model = Model(inputs=[input_data1, input_data2], outputs=res) return model
时间: 2024-01-07 17:04:24 浏览: 82
好的,根据您提供的代码,您可以按照以下方式修改,以定义一个包含注意力机制的LSTNet模型:
```python
from tensorflow.keras.layers import Input, LSTM, Conv1D, Dense, Dropout, concatenate, Activation, Multiply, Lambda
from tensorflow.keras.models import Model
import numpy as np
import arch
def LSTNetAttention(trainX1, trainX2, trainY, config):
# 定义输入层
input_data1 = Input(shape=(trainX1.shape[1], trainX1.shape[2]))
input_data2 = Input(shape=(trainX2.shape[1], trainX2.shape[2]))
# 定义 LSTM 模型
lstm_out1 = LSTM(units=config['lstm_units'], return_sequences=True)(input_data1)
lstm_out2 = LSTM(units=config['lstm_units'], return_sequences=True)(input_data2)
# 定义卷积层和残差网络
conv_out1 = Conv1D(filters=config['conv_filters'], kernel_size=config['conv_kernel_size'], activation='relu')(lstm_out1)
conv_out2 = Conv1D(filters=config['conv_filters'], kernel_size=config['conv_kernel_size'], activation='relu')(lstm_out2)
dropout_out1 = Dropout(config['dropout_rate'])(conv_out1)
dropout_out2 = Dropout(config['dropout_rate'])(conv_out2)
dense_out1 = Dense(units=config['dense_units'], activation='relu')(dropout_out1)
dense_out2 = Dense(units=config['dense_units'], activation='relu')(dropout_out2)
res_out1 = concatenate([conv_out1, dense_out1])
res_out2 = concatenate([conv_out2, dense_out2])
res_out1 = Dropout(config['dropout_rate'])(res_out1)
res_out2 = Dropout(config['dropout_rate'])(res_out2)
res_out1 = Activation('relu')(res_out1)
res_out2 = Activation('relu')(res_out2)
# 定义注意力机制
attention = Dense(units=1, activation='tanh')(res_out2)
attention = Lambda(lambda x: np.exp(x) / np.sum(np.exp(x), axis=1, keepdims=True))(attention)
attention = Multiply()([res_out1, attention])
attention = Lambda(lambda x: np.sum(x, axis=1))(attention)
# 使用 GARCH 模型预测波动率
am = arch.arch_model(trainY, vol='GARCH', p=1, q=1)
res = am.fit()
volatility = res.forecast(horizon=1).variance.iloc[-1].values
# 将预测结果和波动率相乘,得到最终的预测结果
pred = attention
pred = pred * np.sqrt(volatility)
# 将预测结果作为一个新的特征加入到模型中
new_feature = pred.reshape(-1, 1) # 重塑成 (batch_size, 1) 的形状
concat = concatenate([res_out1, new_feature])
res = Activation('sigmoid')(concat)
# 定义模型并返回
model = Model(inputs=[input_data1, input_data2], outputs=res)
return model
```
在这个例子中,我们首先定义了输入层,然后定义了一个包含两个LSTM层的LSTNet模型。接着我们定义了卷积层和残差网络,用于提取和增强特征。然后我们使用注意力机制,根据第二个LSTM层的输出计算注意力权重,并将注意力权重应用到第一个LSTM层的输出上,得到加权后的注意力向量。接着我们使用GARCH模型预测波动率,并将预测结果和注意力向量相乘,得到最终的预测结果。最后我们将预测结果作为一个新的特征加入到模型中,并使用sigmoid函数进行二分类预测。
阅读全文