代码解读: cnn = model.CNN(img_size=config.img_size, num_class=num_class).to(device) cnn.load_state_dict( torch.load(os.path.join(config.model_path, config.model_name)) ) finalconv_name = 'conv' # hook feature_blobs = [] def hook_feature(module, input, output): feature_blobs.append(output.cpu().data.numpy()) cnn._modules.get(finalconv_name).register_forward_hook(hook_feature) params = list(cnn.parameters()) # get weight only from the last layer(linear) weight_softmax = np.squeeze(params[-2].cpu().data.numpy())
时间: 2024-04-29 16:19:29 浏览: 132
这段代码主要是加载一个预训练的卷积神经网络模型,并获取模型的最后一层的权重。
首先,代码通过调用 `model.CNN` 函数创建一个名为 `cnn` 的卷积神经网络模型,并将模型移动到指定的设备上。其输入图像的尺寸是 `config.img_size`,输出类别数目为 `num_class`。
接下来,代码通过调用 `torch.load` 函数加载预训练模型的参数,并使用 `load_state_dict` 函数将参数加载到 `cnn` 模型中。
然后,代码定义了一个名为 `finalconv_name` 的字符串变量,用于指定模型中最后一层的名称。通过使用 `register_forward_hook` 函数,代码将 `hook_feature` 函数注册到模型的最后一层中,以便在前向传递期间获取该层的输出。
最后,代码获取模型的所有参数,并从最后一层的权重中提取出一个名为 `weight_softmax` 的 numpy 数组,该数组将用于后续的可视化操作。具体来说,它从 `params` 列表中获取最后一层的参数,并使用 `np.squeeze` 函数将其转换为一个一维数组。
相关问题
眼科疾病分类python代码
以下是一个简单的眼科疾病分类的Python代码示例,使用了Keras深度学习框架和眼科疾病图像数据集:
```python
import os
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# 设置GPU内存增长
physical_devices = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], True)
# 数据路径和参数
data_path = 'path/to/dataset/'
img_height = 256
img_width = 256
batch_size = 32
# 数据预处理
train_ds = keras.preprocessing.image_dataset_from_directory(
data_path,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
val_ds = keras.preprocessing.image_dataset_from_directory(
data_path,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
class_names = train_ds.class_names
num_classes = len(class_names)
# 数据增强
data_augmentation = keras.Sequential(
[
layers.experimental.preprocessing.RandomFlip("horizontal",
input_shape=(img_height,
img_width,
3)),
layers.experimental.preprocessing.RandomRotation(0.1),
layers.experimental.preprocessing.RandomZoom(0.1),
]
)
# 构建模型
model = keras.Sequential([
data_augmentation,
layers.experimental.preprocessing.Rescaling(1./255),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(64, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(128, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(num_classes)
])
# 编译模型
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
# 训练模型
epochs = 10
model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)
# 评估模型
test_ds = keras.preprocessing.image_dataset_from_directory(
data_path,
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
loss, accuracy = model.evaluate(test_ds)
print("Accuracy", accuracy)
```
这个示例代码使用了卷积神经网络(CNN)来训练眼科疾病分类模型。数据集使用了眼科图像数据集,预处理包括数据增强和归一化。在训练过程中,使用了验证集进行模型性能评估,并在测试集上进行最终评估。
faster rcnn训练自己数据集的代码
Faster R-CNN 是一种基于深度学习的目标检测算法,它可以用于训练自己的数据集。下面是 Faster R-CNN 训练自己数据集的代码示例:
1. 准备训练数据集
首先需要准备训练数据集,包括图像和标注文件。标注文件可以是 VOC 格式或 COCO 格式。
2. 安装依赖库和下载代码
需要安装 TensorFlow 和 Keras,以及下载 Faster R-CNN 的代码。
3. 修改配置文件
修改 Faster R-CNN 的配置文件,包括训练和测试的参数、数据集路径以及模型保存路径等。
4. 训练模型
运行训练代码,使用准备好的数据集进行训练,直到模型收敛或达到预设的训练轮数。
5. 测试模型
使用测试数据集对训练好的模型进行测试,评估模型的准确率和召回率等指标。
6. 模型优化
根据测试结果对模型进行优化,包括调整参数、增加数据集大小等。
参考代码:
以下是 Faster R-CNN 训练自己数据集的代码示例。这里以 TensorFlow 和 Keras 为例,代码中的数据集为 VOC 格式。
```python
# 导入依赖库
import tensorflow as tf
from keras import backend as K
from keras.layers import Input
from keras.models import Model
from keras.optimizers import Adam
from keras.utils import plot_model
from keras.callbacks import TensorBoard, ModelCheckpoint
from keras_frcnn import config
from keras_frcnn import data_generators
from keras_frcnn import losses as losses_fn
from keras_frcnn import roi_helpers
from keras_frcnn import resnet as nn
from keras_frcnn import visualize
# 设置配置文件
config_output_filename = 'config.pickle'
network = 'resnet50'
num_epochs = 1000
output_weight_path = './model_frcnn.hdf5'
input_weight_path = './resnet50_weights_tf_dim_ordering_tf_kernels.h5'
tensorboard_dir = './logs'
train_path = './train.txt'
test_path = './test.txt'
num_rois = 32
horizontal_flips = True
vertical_flips = True
rot_90 = True
output_weight_path = './model_frcnn.hdf5'
# 加载配置文件
config = config.Config()
config_output_filename = 'config.pickle'
# 加载数据集
all_imgs, classes_count, class_mapping = data_generators.get_data(train_path)
test_imgs, _, _ = data_generators.get_data(test_path)
# 计算平均像素值
if 'bg' not in classes_count:
classes_count['bg'] = 0
class_mapping['bg'] = len(class_mapping)
config.class_mapping = class_mapping
# 计算平均像素值
C = config.num_channels
mean_pixel = [103.939, 116.779, 123.68]
img_size = (config.im_size, config.im_size)
# 组装模型
input_shape_img = (None, None, C)
img_input = Input(shape=input_shape_img)
roi_input = Input(shape=(num_rois, 4))
shared_layers = nn.nn_base(img_input, trainable=True)
# RPN 网络
num_anchors = len(config.anchor_box_scales) * len(config.anchor_box_ratios)
rpn_layers = nn.rpn(shared_layers, num_anchors)
# RoI 网络
classifier = nn.classifier(shared_layers, roi_input, num_rois, nb_classes=len(classes_count), trainable=True)
model_rpn = Model(img_input, rpn_layers)
model_classifier = Model([img_input, roi_input], classifier)
# 加载权重
model_rpn.load_weights(input_weight_path, by_name=True)
model_classifier.load_weights(input_weight_path, by_name=True)
# 生成训练数据
data_gen_train = data_generators.get_anchor_gt(all_imgs, classes_count, C, K.image_dim_ordering(), mode='train', \
img_size=img_size, \
num_rois=num_rois, \
horizontal_flips=horizontal_flips, \
vertical_flips=vertical_flips, \
rot_90=rot_90)
# 编译模型
optimizer = Adam(lr=1e-5)
model_rpn.compile(optimizer=optimizer, loss=[losses_fn.rpn_loss_cls(num_anchors), losses_fn.rpn_loss_regr(num_anchors)])
model_classifier.compile(optimizer=optimizer, loss=[losses_fn.class_loss_cls, losses_fn.class_loss_regr(len(classes_count) - 1)], metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'})
# 训练模型
epoch_length = 1000
num_epochs = int(num_epochs)
iter_num = 0
losses = np.zeros((epoch_length, 5))
rpn_accuracy_rpn_monitor = []
rpn_accuracy_for_epoch = []
start_time = time.time()
best_loss = np.Inf
class_mapping_inv = {v: k for k, v in class_mapping.items()}
print('Starting training')
for epoch_num in range(num_epochs):
progbar = generic_utils.Progbar(epoch_length)
print('Epoch {}/{}'.format(epoch_num + 1, num_epochs))
while True:
try:
if len(rpn_accuracy_rpn_monitor) == epoch_length and C.verbose:
mean_overlapping_bboxes = float(sum(rpn_accuracy_rpn_monitor)) / len(rpn_accuracy_rpn_monitor)
rpn_accuracy_rpn_monitor = []
print('Average number of overlapping bounding boxes from RPN = {} for {} previous iterations'.format(mean_overlapping_bboxes, epoch_length))
if mean_overlapping_bboxes == 0:
print('RPN is not producing bounding boxes that overlap the ground truth boxes. Check RPN settings or keep training.')
X, Y, img_data = next(data_gen_train)
loss_rpn = model_rpn.train_on_batch(X, Y)
P_rpn = model_rpn.predict_on_batch(X)
R = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], C.image_dim_ordering(), use_regr=True, overlap_thresh=0.7, max_boxes=300)
X2, Y1, Y2, IouS = roi_helpers.calc_iou(R, img_data, C, class_mapping)
if X2 is None:
rpn_accuracy_rpn_monitor.append(0)
rpn_accuracy_for_epoch.append(0)
continue
# sampling positive/negative samples
neg_samples = np.where(Y1[0, :, -1] == 1)
pos_samples = np.where(Y1[0, :, -1] == 0)
if len(neg_samples) > 0:
neg_samples = neg_samples[0]
else:
neg_samples = []
if len(pos_samples) > 0:
pos_samples = pos_samples[0]
else:
pos_samples = []
rpn_accuracy_rpn_monitor.append(len(pos_samples))
rpn_accuracy_for_epoch.append((len(pos_samples)))
if C.num_rois > 1:
if len(pos_samples) < C.num_rois // 2:
selected_pos_samples = pos_samples.tolist()
else:
selected_pos_samples = np.random.choice(pos_samples, C.num_rois // 2, replace=False).tolist()
try:
selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=False).tolist()
except:
selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=True).tolist()
sel_samples = selected_pos_samples + selected_neg_samples
else:
# in the extreme case where num_rois = 1, we pick a random pos or neg sample
selected_pos_samples = pos_samples.tolist()
selected_neg_samples = neg_samples.tolist()
if np.random.randint(0, 2):
sel_samples = random.choice(neg_samples)
else:
sel_samples = random.choice(pos_samples)
loss_class = model_classifier.train_on_batch([X, X2[:, sel_samples, :]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :]])
losses[iter_num, 0] = loss_rpn[1]
losses[iter_num, 1] = loss_rpn[2]
losses[iter_num, 2] = loss_class[1]
losses[iter_num, 3] = loss_class[2]
losses[iter_num, 4] = loss_class[3]
iter_num += 1
progbar.update(iter_num, [('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])),
('detector_cls', np.mean(losses[:iter_num, 2])),
('detector_regr', np.mean(losses[:iter_num, 3])),
('mean_overlapping_bboxes', float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch))])
if iter_num == epoch_length:
loss_rpn_cls = np.mean(losses[:, 0])
loss_rpn_regr = np.mean(losses[:, 1])
loss_class_cls = np.mean(losses[:, 2])
loss_class_regr = np.mean(losses[:, 3])
class_acc = np.mean(losses[:, 4])
mean_overlapping_bboxes = float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch)
rpn_accuracy_for_epoch = []
if C.verbose:
print('Mean number of bounding boxes from RPN overlapping ground truth boxes: {}'.format(mean_overlapping_bboxes))
print('Classifier accuracy for bounding boxes from RPN: {}'.format(class_acc))
print('Loss RPN classifier: {}'.format(loss_rpn_cls))
print('Loss RPN regression: {}'.format(loss_rpn_regr))
print('Loss Detector classifier: {}'.format(loss_class_cls))
print('Loss Detector regression: {}'.format(loss_class_regr))
print('Elapsed time: {}'.format(time.time() - start_time))
curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr
iter_num = 0
start_time = time.time()
if curr_loss < best_loss:
if C.verbose:
print('Total loss decreased from {} to {}, saving weights'.format(best_loss, curr_loss))
best_loss = curr_loss
model_rpn.save_weights(output_weight_path)
model_classifier.save_weights(output_weight_path)
break
except Exception as e:
print('Exception: {}'.format(e))
continue
print('Training complete, exiting.')
```
这是一个简单的 Faster R-CNN 训练自己数据集的示例代码,可以根据自己的数据集和需求进行修改和优化。
阅读全文