D:\an\lib\site-packages\pandas\_testing.py:24: FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.
时间: 2023-07-21 21:26:31 浏览: 2066
这个警告是因为在未来版本的 `numpy` 中,`np.bool` 将被重新定义为与对应的 `NumPy` 标量相同。建议您将代码中的 `np.bool` 替换为 `bool` 来避免这个警告。如果您使用的是 `pandas`,您也可以尝试升级 `pandas` 至最新版本以避免这个警告。可以使用以下命令进行升级:
```
pip install --upgrade pandas
```
如果您仍然遇到问题,请检查您的代码是否使用了已经被移除的 `numpy` 特性。
相关问题
AttributeError: module 'numpy' has no attribute 'bool'. `np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here. The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations C:\ProgramData\Anaconda3\lib\site-packages\pandas\_testing.py:24: FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar. import pandas._libs.testing as _testing C:\ProgramData\Anaconda3\lib\site-packages\pandas\_testing.py:24: FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar. import pandas._libs.testing as _testing
这个错误是因为你在代码中使用了`np.bool`,而在最新的NumPy版本中,`np.bool`已经被弃用了。为了解决这个问题,你可以直接使用`bool`来替代`np.bool`。这样做不会改变任何行为,而且是安全的。如果你确实需要使用NumPy的标量类型,可以使用`np.bool_`代替。
另外,你可能还会看到一些关于未来警告的信息,这是因为在未来的版本中,`np.bool`将被定义为相应的NumPy标量。不过,为了保持兼容性,建议你尽快修改代码中的`np.bool`。
如果你需要更多详细信息和指导,请参考NumPy的发布说明文档:https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
src/task2_test.py:22: FutureWarning: The pandas.datetime class is deprecated and will be removed from pandas in a future version. Import from datetime instead. data['weekdays'] = pd.to_datetime(data['time']).apply(pd.datetime.weekday) + 1 /data/workspace/myshixun/src/task2.py:12: FutureWarning: The pandas.datetime class is deprecated and will be removed from pandas in a future version. Import from datetime instead. new_data['weekdays'] = pd.to_datetime(new_data['time']).apply(pd.datetime.weekday) + 1 #时间转化 /usr/local/lib/python3.6/site-packages/matplotlib/cbook/__init__.py:1402: FutureWarning: Support for multi-dimensional indexing (e.g. `obj[:, None]`) is deprecated and will be removed in a future version. Convert to a numpy array before indexing instead. x[:, None] /usr/local/lib/python3.6/site-packages/matplotlib/axes/_base.py:276: FutureWarning: Support for multi-dimensional indexing (e.g. `obj[:, None]`) is deprecated and will be removed in a future version. Convert to a numpy array before indexing instead. x = x[:, np.newaxis] /usr/local/lib/python3.6/site-packages/matplotlib/axes/_base.py:278: FutureWarning: Support for multi-dimensional indexing (e.g. `obj[:, None]`) is deprecated and will be removed in a future version. Convert to a numpy array before indexing instead. y = y[:, np.newaxis] 购买意愿与星期之间的关系图完成! 购买意愿与日期之间的关系图完成!
这个问题似乎不是一个问题,而是一段代码的输出结果。这段代码包含了一些FutureWarning,这是由于使用了即将被弃用的代码或方法而产生的警告。这些警告不会影响代码的运行,但是建议尽快修改代码以避免可能出现的问题。另外,这段代码还包含了两张关系图,分别是购买意愿与星期之间的关系图和购买意愿与日期之间的关系图。这些图表可能是使用matplotlib等数据可视化工具生成的。
阅读全文